Guide for New Eli Users

$Revision: 3.13 $

Compiler Tools Group
Department of Electrical and Computer Engineering
University of Colorado
Boulder, CO, USA
80309-0425

Table of Contents

1 How Eli Creates a Text Processing Program

... 3

1.1 How to Decompose a Text Processing Problem 3
1.2 Descriptive Mechanisms Known to Eli....................... ... 6
1.3 Common Derived Objects ..., 8
1.4 How to Request Product Manufacture......................... 10
1.5 How to Invoke Unix Commands...................ooiiiii... 11
Example of Eli Use............................ 13
2.1 Statement of the problem to be solved......................... 13
EXerCISeS . . ottt 15
2.2 Specifying the desired phrase structure 15
EXErCISes . 16
2.3 Nonliteral character sequences and comments.................. 17
EXerCISeS. . oo 17
2.4 Managing source text definitions o 18
EXETCISES . o 20
2.5 Creating structured output text o il 20
Exercises. ... 23
Customizing Eli’s Behavior................... 25
3.1 Hints on Cache Managementcoooiiiin... 25
3.2 Hints on Session Management, 26
System Documentation 29
4.1 How On-line Documentation Supports Debugging.............. 29

A text processor is a program that takes a sequence of characters as input, computes
some set of values based on that sequence, and then carries out some action determined by
the computed values. A desk calculator program is therefore a text processor, as is a Pascal
compiler and the input subsystem of a transaction processor.

The Eli system creates executable text processing programs from specifications. A user
provides Eli with specifications that describe a particular text processing problem, and Eli
creates a program to solve that problem. By making simple requests of Eli, the user can
test the generated program, obtain an executable copy, or obtain a directory containing a
source copy.

This manual is intended for the new Eli user. It begins with a general characterization
of text processing problems. The emphasis is on a strategy for decomposing such problems
and describing their components, but an indication of how Eli builds working software from
these descriptions is also included.

The simplest way to understand a system is to see how it is used. We therefore present
a concrete text processing problem and show, step by step, how a program to solve it is
specified and produced. Each component of the specification is discussed, and exercises
provided to lead you through the production process. The text of the specification is part
of the Eli distribution.

As with any complex system, there are ways to customize Eli to fit particular working
styles. We therefore describe some of the common things that you might want to do to
change Eli’s behavior in order to fit your working style.

Finally, we give an overview of the Eli documentation.

Chapter 1: How Eli Creates a Text Processing Program 3

1 How Eli Creates a Text Processing Program

The program generated by Eli reads a file containing the text, examining it character-
by-character. Character sequences are recognized as significant units or discarded, and
relationships among the sequences are used to build a tree that reflects the structure of the
text. Computations are then carried out over the tree, and the results of these computa-
tions determine the processor’s output. Thus Eli assumes that the original text processing
problem is decomposed into the problems of determining which character sequences are
significant and which should be discarded, what tree structure should be imposed on signif-
icant sequences, what computations should be carried out over the resulting tree, and how
the computed values should be encoded and output.

A wuser describes a particular text processing problem to Eli by specifying the char-
acteristics of its subproblems. For example, the tree structure that should be imposed
on significant character sequences is specified to Eli by providing a context-free grammar.
Different subproblems are characterized in different ways, and they are specified by descrip-
tions written in different languages. Those specifications are processed by a variety of tools,
which verify their consistency and generate C-compatible C++ code to solve the specified
subproblems.

Eli focuses the user’s attention on specification by automating the process of tool in-
vocation. It responds to a request for a piece of computed information, called a derived
object, by invoking the minimum number of tools necessary to produce that information.
Derived objects are automatically stored by Eli for later re-use, significantly improving the
response time for subsequent requests.

This chapter provides an overview of the most important subproblems and how they
can be described, summarizes the available descriptive mechanisms and explains the most
common derived objects, and indicates how Eli is used to create and test programs.

1.1 How to Decompose a Text Processing Problem

There is considerable variability in the specific decompositions for particular text processing
problems. For example, one subproblem of the compilation problem for many programming
languages is overload resolution: how to decide that (say) a particular + operator means
integer addition instead of real addition. Overload resolution would probably not be a sub-
problem of the problem of creating a PostScript version of a musical score from a description
of the desired notes. This section briefly reviews five major subproblems common to a wide
range of problems:

Syntactic analysis
Determining the structure of an input text

Lexical analysis
Recognizing character sequences

Attribution
Computing values over trees

Property storage
Maintaining information about entities

4 Guide for New Eli Users

Text generation
Producing structured output

Syntactic analysis determines the phrase structure of the input text. The phrase struc-
ture is described to Eli by a context-free grammar. Here is a context-free grammar describing
the structure of a geographical position (see Section “Context-Free Grammars and Parsing”
in Syntactic Analysis):

Position: Latitude Longitude .

Latitude: NS Coordinate .

Longitude: EW Coordinate .

NS: °N’ / 8’

EwW: ’E> / 'W’

Coordinate: Integer Float

This grammar has eight symbols (Position, Latitude, Longitude, NS, EW, Coordinate

Integer and Float), four literals (°N’, *S’, ’E’ and ’W’) and eight rules (x: y / z . is
an abbreviation for the two rules x: y . and x: z .). Two of the symbols, Integer and
Float, are not defined by the grammar. One of the symbols, Position, is not used in the
definition of any other symbol.

Symbols that are not defined by the grammar are called terminal symbols; those defined
by the grammar are called nonterminal symbols. The (unique) symbol not used in the
definition of any other symbol is called the axiom of the grammar.

The entire input text is called a sentence, and corresponds to the axiom. Thus the input
text N41 58.8 W087 54.3 is a sentence corresponding to Position. A phrase is a portion
of the sentence corresponding to a nonterminal symbol of the grammar. For example, N41
58.8 is a phrase corresponding to Latitude, and 087 54.3 is a phrase corresponding to
Coordinate. 54 and 58.8 WO087 are not phrases because they do not correspond to any
symbols. (54 is a part of the phrase 087 54.3 corresponding to Coordinate and 58.8
W087 is made up of part of the phrase corresponding to Latitude and part of the phrase
corresponding to Longitude.)

Lexical analysis is the process that examines the source program text, retaining signifi-
cant character sequences and discarding those that are not significant. A character sequence
is significant if it corresponds to a literal in the grammar or to a terminal symbol. In the sen-
tence N41 58.8 W087 54. 3, the significant character sequences are N, 41, 58.8, W, 087 and
54.3. The spaces separating the numbers of a Coordinate and preceding the Longitude
are not significant.

Eli obtains information about character sequences that correspond to literals directly
from the grammar. The user must, however, provide descriptions of the character sequences
corresponding to each terminal symbol. Those descriptions determine the form of the char-
acter sequences, but not their content. For example, the character sequences corresponding
to the terminal symbol Integer might be described as sequences of one or more decimal
digits, and those corresponding to the terminal symbol Float might be described as pairs of
such sequences separated by a dot (see Section “Regular Expressions” in Lexical Analysis):

Integer: $[0-9]+
Float: $[0-9]+"."[0-9]+
Computations may be specified over a tree that reflects the phrase structure of a sen-
tence. That tree has one node corresponding to each phrase, with the root corresponding

Chapter 1: How Eli Creates a Text Processing Program 5

to the sentence. For example, the tree that reflects the structure of the sentence N41 58.8
W087 54.3 has a node corresponding to the Latitude phrase N41 58.8. Children of a
node correspond to the immediate component phrases of the phrase corresponding to that
node. Thus the children of the the node corresponding to the Latitude phrase N41 58.8
would correspond to the phrases N and 41 58.8, because the immediate components of the
Latitude phrase N41 58.8 are an NS phrase (N) and a Coordinate phrase (41 58.8).

One or more values, called attributes, may be associated with each tree node. Computa-
tions over the tree may involve only attribute access, C constants, and function application.
Here is an example:

RULE DegMin: Coordinate ::= Integer Float
COMPUTE

Coordinate.minutes=Minutes(Integer, Float);
END;

According to the rule DegMin, Coordinate has a minutes attribute attached to it. The
minutes attribute of Coordinate is computed by applying the function Minutes to the
values representing Integer and Float, but how are those values obtained? Clearly they
must depend on the character sequences corresponding to these terminal symbols.

A single integer value can be used to represent any terminal symbol. That value is
determined by a token processor whose name is attached to the definition of the character
sequences corresponding to the symbol, enclosed in brackets (see Section “Token Processors”
in Lexical Analysis):

Integer: $[0-9]+ [mkstr]
Float: $[0-9]+"."[0-9]+ [mkstr]

The processor mkstr is a library routine that stores the character sequence in an array
and yields the sequence’s index. Minutes can then use the index values to obtain the stored
strings, convert them to numbers, and perform the necessary computation.

Often an input text describes some set of entities and the relationships among them.
For example, a program in a conventional language may describe some set of constants,
variables, types and procedures, and how these entities are related in the execution of an
algorithm. Entities may be defined by one part of the input text and used by another. It
is therefore necessary for computations over the tree representing the phrase structure of a
sentence to be able to refer to entities and their properties at arbitrary points. Eli provides
a definition table to meet this requirement (see Section “Definition Table Design Criteria”
in Definition Table).

Each entity can be represented by a unique definition table key, which allows access to
arbitrary information about that entity. The Eli user specifies the information that might
be stored, and possibly a set of query and update operations for that information. (Eli
provides a standard query operation and a standard update operation that suffice for most
purposes.)

Library modules are available for associating unique definition table keys with identifiers
according to the scope rules of the input text, and for maintaining various kinds of informa-
tion about entities. Definition table keys themselves can be stored as attributes, compared
for equality, passed to query and update routines, and accessed either directly or remotely.
A distinguished value, NoKey, represents the absence of a definition table key.

6 Guide for New Eli Users

Output may be derived from arbitrary information in the input text. The elements of the
output may be arranged in arbitrary ways based on computations over the tree representing
the phrase structure of a sentence. It is therefore useful to be able to build up a complex
output data structure piecemeal, combining components according to information gleaned
from computation.

The program text generation facility allows the user to specify templates that describe
output text fragments (see Section “Pattern Specifications” in PTG: Pattern-Based Text
Generator). “Holes” in these templates can be filled with text generated according to other
templates. The result is a directed, acyclic graph in which each node represents a single
template and the children of that node represent generated text fragments. Text at the
leaves can be generated by arbitrary user-supplied routines. (A library module provides
common leaf generation routines.)

Eli generates a set of functions, one per template, that are invoked during computations
to build the directed, acyclic graph. These functions return values that can be stored as
attributes, passed to text generation functions, and accessed either directly or remotely. A
distinguished value, PTGNULL, represents the absence of a graph.

Printing functions are also provided by Eli to output the generated text on an arbitrary
file (including the standard output unit). These functions accept a graph and perform
a depth-first, left-to-right traversal. The text is output during the traversal, with text
generated by a common subgraph being output once for each parent of that subgraph.

1.2 Descriptive Mechanisms Known to Eli

The Eli user describes the subproblems of a particular text processing problem. Eli derives
code fragments from these descriptions, and combines them into a complete program. Each
description is given in a notation that is ideally suited to the subproblem being described.

Subproblem descriptions are placed into files, each of which has a type. The type is
indicated by the file name extension: ‘foo.c’ is a type-‘c’ file. Eli recognizes type-‘c’ and
type-‘h’ files as C program text and include files respectively. Here is a list of the other file
types recognized by Eli:

‘specs’ A collection of object names, one per line.

4 i

con A description of the phrase structure of the input text. Each phrase may be
associated with a computation to be carried out when that phrase is recognized.
Eli generates a parser from these specifications. See Section “top” in Syntactic
Analysis.

gla’ A description of character sequences, whether they are meaningful or not, and
what (if any) computation should be carried out when they are recognized in
the input text. Eli generates a scanner from these specifications. See Section
“top” in Lexical Analysis.

‘lido’ A description of the structure of a tree and the computations to be carried out
on that tree. Eli generates a tree-walking evaluator from these specifications.
For a discussion on constructing computations in trees, see Section “top” in
LIDO - Computation in Trees. For reference, see Section “top” in LIDO -
Reference Manual.

Chapter 1:

‘ctl’

ptg

‘pdl,

‘0il’

‘clp

‘map

sym

‘delit’

str

How Eli Creates a Text Processing Program 7

Constraints on evaluator generation. Eli uses these specifications to modify its
behavior when constructing the routine that carries out the computations. See
Section “top” in LIGA Control Language Reference Manual.

A description of structured output text. Eli generates a set of output functions
from these specifications. See Section “top” in Pattern-Based Text Generator.

A definition of entities and their associated properties. Eli generates a definition
table module from these specifications. See Section “top” in PDL Reference
Manual.

A definition of possible tree node re-labeling. Eli generates a re-labeling module
from these specifications. See Section “top” in OIL Reference Manual.

A description of the meanings of command line arguments. Eli generates a
module that accesses command line arguments from these specifications. See
Section “top” in CLP Reference Manual.

A description of the relationship between the phrase structure of the input text
and the structure of the tree over which computations are to be made. Eli uses
this specification to determine the tree building actions that must be attached
to rules of the parsing grammar. See Section “Mapping” in Syntactic Analysis.

This is provided for backward compatibility with previous Eli releases for spec-
ifying symbolic equivalence classes. It is superseded by type-‘map’ files. See
Section “Specifying symbolic equivalence classes” in Syntactic Analysis.

Specifies literals appearing in a type-‘con’ file that are to be recognized by spe-
cial routines. Each line of a type-‘delit’ file consists of a regular expression (see
Section “Regular Expressions” in Lexical Analysis) optionally followed by an
identifier. The regular expression defines the literal to be recognized specially.
A #define directive making the identifier a synonym for that literal’s syntax
code is placed in the generated file ‘litcode.h’.

Specifies initial contents of the identifier table. Each line of a type-‘str’ file con-
sists of two integers and a sequence of characters. The first integer is the syntax
code to be returned by mkidn (see Section “Unique Identifier Management” in
Library Reference Manual), and the second is the length of the character se-
quence. The integer representing the length is terminated by a single space.
The character sequence begins immediately after this space, and consists of
exactly the number of characters specified by the length.

Defines a generic module. Generic modules can be instantiated to yield collec-
tions of specifications that solve specific problems.

Combines a collection of strongly-coupled specifications with documentation
describing their relationships. Eli splits these specifications according to their
types and processes them individually. It can also create a printed document
or on-line hypertext from a type-‘fw’ file.

Material to be included in some part of the generated processor. Specification
files of this type should have a name consisting of three parts: foo.bar.phi. All
the files whose names end in ‘bar.phi’ are concatenated together in arbitrary

8 Guide for New Eli Users

order to form a file named bar.h. An #include directive can then be used to
incorporate ‘bar.h’ into any generated file.

‘.phi’-file-parts may also be generated by different Eli-Tools. They may only
be used in files of type ‘.h’ and ‘.c’. They are automatically protected against
multiple inclusion.

eta Material to be included in some part of the specifications. Specification files
of this type should have a name consisting of three parts: foo.bar.eta. All
the files whose names end in ‘bar.eta’ are concatenated together in arbitrary
order to form a file named bar.eta.h. An #include directive can then be used

to incorporate ‘bar.eta.h’ in any specification file.

‘.eta’-file-parts can be used in any specification file with the exception of
‘.specs’ and ‘.fw'-files. The generated include-files are not protected against
multiple inclusion.

Any of these files can contain C-style comments and preprocessor directives such as
#include, #define and #ifdef. The C preprocessor is applied to files of all types except
type-‘fw’ before those files are examined. C-style comments and preprocessor directives
appearing in type-‘fw’ files are passed unchanged to the files generated from the type-‘fw’
file.

Eli includes three pre-defined header files, which are usually generated from type-‘phi’
specifications, in specified places:

‘HEAD.h’ Included at the beginning of the main program, the tree constructor, and the
attribute evaluator. This header file is used primarily to define abstract data
types used in tree computation.

‘INIT.h’ Included at the beginning of the main program’s executable code. ‘INIT.h’ may
contain declarations, but only if they appear at the beginning of compound
statements that lie wholly within ‘INIT.h’. The content of ‘INIT.h’ will be
executed before any other code. Its primary purpose is to initialize abstract
data types used in tree computation.

‘FINL.h’ Included at the end of the main program’s executable code. ‘FINL.h’ may
contain declarations, but only if they appear at the beginning of compound
statements that lie wholly within ‘FINL.h’. The content of ‘FINL.h’ will be
executed after all other code. Its primary purpose is to finalize abstract data
types used in tree computation.

1.3 Common Derived Objects

Eli recognizes three kinds of object: a file, a string and a list. Examples of files are a
specification file such as those mentioned in the previous section, an executable binary file,
or an output file from a test run. A flag to a command is an example of a string. Lists are
ordered sequences of objects, such as the arguments to a command or the Makefile, C files,
and header files that implement a text processor.

Source objects can be created or modified directly by the user. They can be regular files,
directories, or symbolic links. Source objects cannot be automatically recreated by Eli; they
are the basic building blocks from which Eli creates all other objects. Every source object

Chapter 1: How Eli Creates a Text Processing Program 9

is given a type by Eli based on its host filename, and this type determines what derived
objects can be produced from the source object.

The file type of a source file is the longest suffix of the file name that matches one of
the source type suffixes listed in the last section. If no suffix match is found, the file type
is empty.

Derived objects are objects that can be produced from source objects and other derived
objects through the invocation of one or more tools. Tools are invoked only as needed
to create a specified derived object. Eli automatically caches derived objects for re-use in
future derivations. Derived objects are created and modified only by Eli itself, not by users.

A derived object is named by an odin-expression (see Section “Referring to Objects”
in User Interface). Lexically, an odin-expression is composed of a sequence of identifier
and operator tokens, and is terminated by a newline character. An odin-expression can
be continued on multiple lines by escaping each newline character with a backslash. This
backslash (but not the newline) is deleted before the expression is parsed. Multiple odin-
expressions can be specified on the same line by separating them with semicolon operators.

An identifier token is just a sequence of characters. The following characters must be
escaped to be included in an identifier:

:+=()/%; 7?28 <>"'! #\ ’ space tab newline
A single character can be escaped by preceding it with a backslash (e.g. lost\+found).

A sequence of characters can be escaped by enclosing them in single quote marks (e.g.
’lost+found’).

Unescaped white space characters (spaces, tabs, and newlines) are ignored during parsing
except when they separate adjacent identifiers.

Here are a number of odin-expressions that name common objects derived from the same
collection of specifications (all of the spaces are redundant). The identifier following a colon
(:) is an object type (or product) that characterizes the properties of the derived object,
while the identifier following a plus (+) is a parameter type that modifies those properties
without changing the nature of the derived object. (For the characteristics of all of the
products and parameters defined by Eli, see Products and Parameters.)

sets.specs :exe
is the executable program generated by Eli from the specifications enumerated
in sets.specs. It is a normal program for the machine on which it was gener-
ated, and is independent of Eli.

sets.specs :source
is a set of C files, a set of header files, and a Makefile. The result of running
make with this information is the executable program generated by Eli from the
specifications enumerated in sets.specs.

sets.specs :exe :help
is a browser session that helps to explain inconsistencies in the specifications
enumerated in sets.specs. It provides cross-references to on-line documenta-
tion and allows you to invoke an editor on the proper files to make corrections.

. +cmd=(sets.specs :exe) (input) :run
is the result of running the program generated by Eli from the specifications
enumerated in sets.specs as a command with the file ‘input’ from the current

10 Guide for New Eli Users

directory as an argument. The name of the directory (in this case ., the name
of the current directory) in which the program is to be executed precedes the
parameter that defines the command to be executed.

sets.specs +monitor +arg=(input) :mon
is an interaction with the program generated by Eli from the specifications enu-
merated in sets.specs, as it processes the data file ‘input’. This interaction
allows you to follow the execution at the level of your specifications, rather than
at the level of the machine on which the program is running.

sets.specs +debug :dbx
is an interaction with the program generated by Eli from the specifications
enumerated in sets.specs using the symbolic debugger of the machine on
which the program is running. It is useful when some of your specifications
are written directly in C. (Replace dbx with gdb to use the GNU symbolic
debugger.)

sets.specs :gencode :viewlist
is an interactive shell executing in a directory containing all text files gener-
ated by Eli from the specifications enumerated in sets.specs. This facility is
sometimes useful in diagnosing compiler errors due to type mismatches.

sets.specs :exe :err >
is the raw set of reports generated by inconsistencies in the specifications enu-
merated in sets.specs, written to the screen. (It would be sent to your editor
if you replaced > with <.) This display is sometimes useful if the reports are
garbled by the help derivation.

sets.specs :exe :warn >
is the raw set of reports generated by anomalies in the specifications enumerated
in sets.specs, written to the screen. (It would be sent to your editor if you
replaced > with <.) This display is sometimes useful if the reports are garbled
by the help derivation.

1.4 How to Request Product Manufacture

Eli is invoked by giving the command eli. If you have never used Eli before, it will have to
establish a cache (see Section 3.1 [Hints on Cache Management|, page 25). This process is
signaled by a long sequence of messages about installing packages, followed by a note that
the packages have been compiled.

After printing an identifying banner, Eli writes the prompt -> and waits for input. The
interactive session can be terminated by responding to the -> prompt with a "D, and you
can browse the documentation by responding with a question mark.

Entering a derived object name in response to the —> prompt constitutes a request to
bring that derived object up to date with respect to all of the source objects on which
it depends. Eli will carry out the minimum number of operations required to satisfy this
request. When the next -> prompt appears, the given object will be up to date.

Bringing an object up to date does not yield a copy of that object. To obtain a copy,
you must add an output request. The precise form and effect of an output request depends

Chapter 1: How Eli Creates a Text Processing Program 11

on whether the object being output is a file object or a list object. All source objects are
file objects; to find out the kind of a derived object, consult Products and Parameters.

Here are some examples of common output requests:

sets.specs :parsable >
requests that the derived file object sets.specs :parsable be written to the
standard output (normally the screen). Garbage will result if the derived object
is not a text file.

sets.specs :exe > trans
requests that the derived file object sets.specs :exe be written to file ‘trans’.
The derived object must be a file object, but it need not be text. If the file
‘trans’ does not exist, it will be created; if it does exist, it will be overwritten if
its content differs from that of the derived object sets.specs :exe. If ‘trans’
exists and is a directory, a file named sets.specs.exe will be written to that
directory (see Section “Extracting and Editing Objects” in User Interface).

sets.specs :source > src
requests that the derived list object sets.specs :source be written to direc-
tory ‘src’. The directory ‘src’ must exist. A file in ‘src’ before the request
will be overwritten only if it has the same name as one of the file objects in
the list sets.specs :source, but different content. (Normally, ‘src’ would be
either an empty directory or one that contains an earlier version of sets.specs
:source.)

sets.con <
requests that your current editor be invoked on the object sets.con

1.5 How to Invoke Unix Commands

While one is interacting with Eli, there are a number of situations in which one wishes
to execute normal operating system commands. These commands can be executed with
or without derived objects as arguments. We have already seen the most general form,
a derived object that is an execution of an arbitrary command in an arbitrary directory
(see Section 1.3 [Products]|, page 8). Although this facility is general enough to handle any
command execution, it is cumbersome for simple commands.

The ! character introduces a host command line (see Section “Unix Commands” in User
Interface). If the first non-white space character following the ! is not :, ; or = then the rest
of the line is treated as a single, escaped sequence of characters. This avoids the confusion
resulting from interactions between the escape conventions of host commands and odin-
expressions. A leading :, ;, = or whitespace can be included in the escaped sequence by
preceding it with \.

If the name of a file object precedes the ! character, that object is brought up to date
and the name of a file containing it is appended to the host command line.

Here are examples of some typical command invocations using !:
Ils lists the files in the current directory.

Imkdir src
makes a new subdirectory of the current directory.

12 Guide for New Eli Users

(sets.specs :exe) ! size
provides information about the space used by the processor generated from
sets.specs.

input +cmd=(sets.specs:exe) :stdout ! diff desired
compares the file ‘desired’ with the result of applying the processor generated
from sets.specs to the file ‘input’.

Chapter 2: Example of Eli Use 13

2 Example of Eli Use

The example in this chapter illustrates how text processors are specified to Eli. Each section
covers a major step in the development process, discussing the purpose of that step and
then carrying it out for the example. A set of exercises is provided with each section. The
purpose of these exercises is to familiarize you with the basic facilities that Eli provides for
dealing with specifications, and how Eli is typically used.

All of the text used in the exercises can be obtained, and the exercises themselves can
be carried out, using the facilities of Eli’s system documentation browser described in the
first set of exercises given below (see [Exercises|, page 15).

2.1 Statement of the problem to be solved

You need to classify a collection of several thousand words. There are no duplicate words in
any class, but a given word may belong to more than one class. The classes have arbitrary
names, and no two classes may have the same name.

A C program will manipulate the words and classes. Because of the application, classes
will be relatively fluid. The customer expects that new words and classes will be added,
and the classification of existing words changed, on the basis of experience and changing
requirements. Nevertheless, the system design requires that the data be built into the C
program at compile time.

The system designers have settled on an internal representation of the data involving
an array for each class containing the words in that class as strings, an array containing
the class names as strings, and an array containing the sizes of the classes as integers. The
number of classes is also given. All of these data items are to be specified in a single header
file. Here is an example of such a header file for a simple classification:

int number_of_sets = 3;

char *name_of_set[] = {
"colors",

llbugs n ’

"verbs"};

int size_of_set[] = {
3,

5,
4};

char *set_of_colors[] = {
"red",

"blue",

"green"};

char *set_of_bugs[] = {
"ant n s
"spider",

14 Guide for New Eli Users

"fly",
"moth“,
"bee"};

char *set_of_verbs[] = {
"crawl",

"walk",

n run" s

"fly“};

char **xvalues_of_set[] = {
set_of_colors,
set_of_bugs,
set_of_verbs};

Although the meaning of the internal representation is straightforward, it is quite clear
that making the necessary alterations will be a tedious and error-prone process. Any change
requires compatible modifications of several arrays. For example, moving a word from one
class to another means not only cutting and pasting the word itself, but also changing the
sizes of both classes.

It would be simpler and safer to define the classification with a notation ideally suited
to that task, and generate the header file from that definition. Here is an example of an
obvious notation, defining the classification represented by the header file given above:

colors{red blue green}
bugs{ant spider fly moth bee}
verbs{crawl walk run fly}

The remainder of this chapter discusses the specification and generation of a program
that translates class descriptions into header files. This program must accept a class de-
scription, verify that class names are unique and that there is only one occurrence of any
given word in a class, and then write a header file defining the appropriate data structure.
Its specification is broken into four parts, each stored in a separate file:

‘sets.con’
A context-free grammar describing the structure of the input text.

‘word.gla’
A specification of the character sequences that are acceptable words, and how
those character sequences should be represented internally, plus a specification
of the character sequences to be ignored.

‘symbol.lido’
A specification of the context conditions on uniqueness of set names and ele-
ments within a single set.

‘code.fw’ A specification of the form of the output text and how it is constructed.

File ‘sets.specs’ lists the names of these four files and contains requests to instantiate
three library modules that support them.

Chapter 2: Example of Eli Use 15

Exercises

Invoke Eli and type 7, followed by a carriage return. This request will begin a documentation
browsing session. Use the browser’s goto command to place yourself at node (novice)tskex
(Browser commands are described in Section “Some Advanced Info Commands” in Info.)

If you are using a computer with multiple-window capability, your documentation brows-
ing session is independent of your Eli session, so you can simultaneously browse the docu-
mentation and make Eli requests. Otherwise you must terminate the document browsing
session in order to make an Eli request. In that case, you might want to make a note of
your current node (given in the highlighted status line) before exiting. When you begin a
new session, you can then use the g command to go directly to that node.

1. Use the documentation browser’s run command to obtain a copy of the complete spec-
ification. You will use this copy to do the exercises in the remainder of this chapter.

2. Verify that you have obtained all of the specification files by making the following
Unix request via Eli (see Section “Running Unix commands from Eli” in User Interface
Reference Manual):

-> Ils
3. Examine the file that is not a part of the specification by requesting Eli to display
it on screen (see Section “Copying to Standard Output” in User Interface Reference
Manual):

-> input>

2.2 Specifying the desired phrase structure

The first step in specifying a problem to Eli is to develop a context-free grammar that
describes the phrase structure of the input text. This structure must reflect the desired
semantics, and it must be possible for Eli to construct a parser from the grammar. Grammar
development is a surprisingly difficult task. It is best to concentrate on the meaning of the
tree structure as you are developing the grammar, and not try to economize by using the
same symbols to describe constructs that look the same but have different meanings.

One possible description of the structure of the set definition text is (see Section “How
to describe a context-free grammar” in Syntactic Analysis):

text: set_defs .

set_defs: set_def / set_defs set_def

set_def: set_name ’{’ set_body ’}’

set_name: word .

set_body: elements .

elements: set_element / elements set_element .
set_element: word .

Here each set definition is described as a set_name followed by a bracketed set_body. The
text will be made up of an arbitrary number of such definitions. A set_body, in turn,
consists of an arbitrary number of elements. The set_name and each set_element is a
word.

This structure represents the semantics of the input text: Set names and set elements
have different meanings, even though they are both written as words. Set bodies are signifi-
cant units, even though they have the same form as any subset of themselves. The following

16

Guide for New Eli Users

specification would not reflect the semantics, even though it is simpler and describes the
same input language:

text: set_defs .

set_defs: set_def / set_defs set_def
set_def: word ’{’ elements ’}’
elements: word / elements word .

Exercises

To get information about whether Eli can construct a parser from a grammar without actu-
ally trying to build the whole program, use the :parsable product (see Section “parsable”
in Products and Parameters Reference Manual). In order to be parsable, the grammar
must satisfy the LALR(1) condition. If the LALR(1) condition is satisfied, parsable will
indicate that fact. Otherwise it will say that the grammar is not LALR(1) and provide a
listing of conflicts (see Section “How to Resolve Parsing Conflicts” in Syntactic Analysis).

1.

4.

Tell Eli to explain what it is doing, and request verification that Eli can generate a
parser. Append > to the derivation to tell Eli to copy the results on the screen.

-> Loglevel=4
-> sets.specs :parsable>

When the process is complete, repeat the last request. To save keystrokes, you can
scroll through the history (see Section “The History Mechanism” in User Interface)
using the up- and down-arrow keys.

Explain the very different responses to the two requests for verification of parsability.

Request an editing session on the file ‘sets.con’ (see Section “Editing with the Copy
Command” in Eli User Interface Reference Manual):

-> sets.con<

Delete text from the first rule of the grammar, leaving the colon and everything fol-
lowing it unchanged. Then request execution as before, scrolling through the history:

-> sets.specs:parsable>

Why was Eli’s response so much shorter than before?

Obtain help diagnosing the error you created by deleting text:
—-> sets.specs :parsable :help

This request will start a documentation browsing session. Follow the menu to the
display for the file in error, and use the edit command to gain access to that file.
Correct the error by inserting text before the colon, exit the editor, and then quit the
browsing session. Use the Eli history mechanism to repeat the last request:

-> sets.specs :parsable :help
Explain Eli’s response to this request. Why was no documentation browsing session
started? Why was the response so much shorter than the response to the original
request for derivation and execution of the processor?
Your request for help after fixing the error really didn’t demonstrate that the grammar
was parsable, because it didn’t show you the result. Request the result:

-> sets.specs :parsable>
Explain Eli’s response to this request. What steps were carried out to satisfy it? Why
were these the only ones necessary?

Chapter 2: Example of Eli Use 17

5. Delete the braces { } from the rule defining set_def in file ‘sets.con’. This change
makes the entire input text nothing but a list of words, with no differentiation between
set names and elements or between different sets. Eli will not be able to generate a
parser from this grammar. Request verification of parsability to see the error report:

-> sets.specs :parsable >

A shift-reduce conflict is a situation in which the parser can’t tell whether it should
recognize a complete phrase or continue to add symbols to an incomplete phrase. In
this example, the next word is either the name of a new set (and thus the current
elements phrase is complete), or it is another set element (and thus belongs to the
current elements phrase).

Add a comma as a separator between set elements, but do not re-introduce the braces.
Do you think that Eli will be able to generate a parser? Briefly explain, and then verify
your answer. (For a more complete treatment of conflict resolution, see Section “How
to Resolve Parsing Conflicts” in Syntactic Analysis.)

Restore the original specification, or change ‘input’ to conform to your new specifica-
tion, to ensure correct behavior for later exercises.

2.3 Nonliteral character sequences and comments

The terminal symbols of the grammar are the literal braces and the nonliteral symbol word.
Eli can easily deduce that the braces are significant characters, but we must provide a
definition of the significant character sequences that could make up a word. We must also
describe how to capture the significant information in a word for further processing.

Eli normally assumes that white space characters (space, tab and newline) are not sig-
nificant. If we want to provide a facility for commenting a classification then we must
additionally define the form of a comment and specify that character sequences having this
form are also not significant.

Here is one possible description of the non-literal character sequences and comments:

word: $[a-zA-Z]+ [mkidn]
C_COMMENT

The first line defines a word to be any sequence of one or more letters (see Section
“Regular Expressions” in Lexical Analysis). Whenever such a sequence is recognized in
the input text, mkidn is invoked to capture the significant information represented by the
sequence. This processor associates an integer with the recognized sequence, and arranges
for that integer to become the value representing the character sequence. If two character
sequences recognized as words are identical, mkidn will represent them with the same integer;
distinct sequences are represented by different integers.

The second line of the specification does not begin with a symbol followed by :, which
indicates that the character sequences it describes are not significant. It uses a canned
description to describe character sequences taking the form of C comments (see Section
“Canned Symbol Descriptions” in Lexical Analysis). Thus any character sequence taking
the form of a C comment will be ignored in the input text read by the generated program.

Exercises

1. Tell Eli to keep quiet about what it is doing, and then ask it to run the processor
derived from your specification:

18 Guide for New Eli Users

-> LogLevel=2
-> input +cmd=(sets.specs :exe) :stdout >
2. The sample input file does not contain either comments or errors. Introduce an error
by inserting a digit into one of the words of the example and repeat your request:
-> input<
-> input +cmd=(sets.specs :exe) :stdout >
Briefly explain Eli’s response to this request.
3. Verify that the generated processor correctly handles C comments.

4. Change the specification to accept only words that begin with upper-case letters. Gen-
erate a translator and verify its correctness.

5. Change the specification to allow Ada comments instead of C comments. (Hint: see
Section “Canned Symbol Descriptions” in Lexical Analysis.) Generate a translator and
verify its correctness.

2.4 Managing source text definitions

The statement of the problem requires that the names of the classes be unique, and that
there be only one occurrence of a given word in a given class. This sort of condition is
very common in translation problems. It involves recognition of regions and specific entities
within those regions. For example, a set_body is a region and a set_element is a specific
entity within that region. The check to be made is that no set_element appears more than
once in any set_body.

Regions are defined by the grammar. Entities may be defined both by the grammar and
by the values representing the terminal symbols: the grammar selects a particular kind of
phrase, while the instances of this phrase are differentiated by the values of their terminal
symbols. Some computation must be carried out over the region to verify the condition.
This computation is standard, involving only the concepts of region and entity, so a generic
module can be used to carry it out.

In order to use a generic module we must instantiate that module and connect the
concepts it provides to the specification of our problem. Instantiation is handled in the
‘sets.specs’ file:

$/Name/AlgScope.gnrc :inst
$/Prop/Unique.gnrc :inst

The AlgScope module provides the concept of nested regions containing entities dis-
tinguished by integer values (see Section “Algol-like Basic Scope Rules” in Specification
Module Library: Name Analysis). The Unique module provides the concept of an error
for entities that appear more than once in a region (see Section “Check for Unique Object
Occurrences” in Specification Module Library: Properties of Definitions).

An attribute grammar fragment is used to connect the concepts provided by these two
modules to the specification of the phrase structure:
ATTR Sym: int;

SYMBOL Entity INHERITS IdDefScope, Unique COMPUTE
SYNT . Sym=TERM;
IF(NOT(THIS.Unique),

Chapter 2: Example of Eli Use 19

message (ERROR, "Multiply-defined word", O, COORDREF));
END;

SYMBOL text INHERITS RootScope, RangeUnique END;
SYMBOL set_body INHERITS RangeScope END;

SYMBOL set_name INHERITS Entity END;

SYMBOL set_element INHERITS Entity END;

The symbol Entity, which does not occur in the context-free grammar, is used to rep-
resent the concept of a word that must be unique within some region: a set_name must be
unique over the region lying outside of all sets, while a set_element must be unique over
the set in which it appears. Entity allows us to gather all of the characteristics of that
concept in one place — a symbol attribution — and then use inheritance to associate those
characteristics with the symbols that embody the concept.

An Entity appears in the input text as a word, which is represented internally by the
value representing the terminal symbol word. That value was established by mkidn when
the word was recognized (see (undefined) [GLA specification|, page (undefined)).

The two symbols inheriting Entity, set_name and set_element, are defined by rules
that have terminal symbols on their right-hand sides. TERM can be used in a symbol compu-
tation to represent the value of a terminal symbol appearing on the right-hand side of any
rule defining the given symbol (see Section “Terminal Access” in LIDO Reference Manual).
Thus SYNT.Sym=TERM sets the Sym attribute of the Entity to the value representing the
terminal symbol defining that Entity. (SYNT means that the computation takes place in
the lower context of the symbol, i.e. in the rules corresponding to the phrases set_name:
word and set_element: word. See Section “Types and Classes of Attributes” in LIDO
Reference Manual.)

The concept of a definition within a region is embodied in the symbol IdDefScope
exported by the AlgScope module, while the concept that such a definition must be unique
is embodied in the symbol Unique, exported by the Unique module. Thus Entity inherits
from these two symbols.

If the Unique attribute of the Entity is false, then the message operation is invoked to
output an error report. The report has severity ERROR, which indicates that a definite error
has been detected and therefore no object code should be produced (see Section “Source Text
Coordinates and Error Reporting” in Library Reference Manual). It is placed at the source
text coordinates (line and column) represented by COORDREF, and consists of the string
Multiply-defined word. COORDREF always refers to the location of the leftmost character of
the phrase corresponding to the rule in which it appears. Since this computation is inherited
by set_name and set_element, it appears in rules corresponding to the phrases set_name:
word and set_element: word. Any error report will therefore refer to the leftmost character
of the multiply-defined word.

The text is the outermost region (RootScope), within which the set names are defined.
Each set body is an inner region (RangeScope), within which the set elements are defined.
Therefore text inherits the RootScope computations and set_body inherits the RangeScope
computations.

A set_name must be unique within the text and a set_element must be unique within
its set_body, so both text inherits the RangeUnique computations.

20 Guide for New Eli Users

Exercises

1. Create a subdirectory ‘src’ and then request source code for the set processor (see
Section “Running Unix commands from Eli” in User Interface Reference Manual):

-> Imkdir src
-> sets.specs :source >src

Does ‘src’ really contain a version of the translator that is independent of Eli? How
can you be certain?

2. Try deriving source code without first creating a directory:
-> sets.specs :source >foo
What was the result? Can you explain what happened?
3. Request an executable version of the translator:
-> sets.specs :exe >sets.exe

Is this executable independent of Eli? How can you be certain?

2.5 Creating structured output text

At least two specifications, and sometimes more, are needed to create structured output
text. The form of the text must be described, along with the source of its components. Eli
generates a set of procedures from the description of the form of the text, one for each kind
of component. The information about the components is then provided by a computation
that invokes these procedures with appropriate arguments.

We have already seen how Eli allows us to break the specification into files that encap-
sulate individual tasks. So far, each of the tasks has required only one kind of specification.
Here, however, we have a single task that requires at least two specifications. There is
strong coupling between these specifications, however, so that a change to one will often
involve a change to the other. The solution is to combine such related specifications into
a single file of type ‘fw’. A type-‘fw’ file describes a set of specification files that Eli will
separate as necessary, but which the user can manipulate as a single entity.

The variable atoms of the generated C code are integers (like the number of elements
in a set) and strings (like the elements of a set). LeafPtg (see Section “PTG Output of
Leaf Nodes” in Specification Module Library: Generating Output) is a generic module that
provides operations useful in writing such atoms, so it is instantiated in file ‘sets.specs’

$/0utput/LeafPtg.gnrc :inst

Three related specifications are used to describe the creation of the C declarations. First
the general form of the declarations is given in a special language called PTG, then there
is an attribute grammar fragment that computes the individual components, and finally
two C macros are needed to implement operations used in the computations. All three
specifications are combined in a single type-‘fw’ file called ‘code.fw’:

@0@<code.ptg@>@{
Table:
"int number_of_sets = " $/*integer*/ ";\n\n"
"char *name_of_set[] = {\n"
$/*1ist of set namesx*/ "};\n\n"
"int size_of_set[] = {\n"

Chapter 2: Example of Eli Use 21

$/*1list of set sizes*/ "};\n\n"
$/*1ist of setsx/

"char **values_of_set[] = {\n"
$/*1list of set representations*/ "};"

Set:
"char *set_of_" $/*set namex/ "[] = {\n"
$/*1list of set elements*/ "};\n\n"

Seq:
$ 8

List:
$ n ,\1’1" $

Quoted:
II\II n $ II\II n

Name:
"set_of_" $
@}

@0@<code.1ido@>@{
ATTR Ptg: PTGNode;
SYMBOL Entity INHERITS IdPtg END;

SYMBOL text COMPUTE
IF(NoErrors,
PTGOut (
PTGTable(

PTGNumb (CONSTITUENTS set_name.Sym WITH (int, ADD, ARGTOONE, ZERD)),
CONSTITUENTS set_name.Ptg WITH (PTGNode, PTGList, PTGQuoted, PTGNull),
CONSTITUENTS set_body.Size WITH (PTGNode, PTGList, PTGNumb, PTGNull),
CONSTITUENTS set_def.Ptg WITH (PTGNode, PTGSeq, IDENTICAL, PTGNull),
CONSTITUENTS set_name.Ptg WITH (PTGNode, PTGList, PTGName, PTGNull))));

END;

ATTR Size: int;
SYMBOL set_body COMPUTE

SYNT.Size=CONSTITUENTS set_element.Sym WITH (int, ADD, ARGTOONE, ZERO);
END;

SYMBOL set_def COMPUTE
SYNT.Ptg=
PTGSet (
CONSTITUENT set_name.Ptg,
CONSTITUENTS set_element.Ptg WITH (PTGNode, PTGList, PTGQuoted, PTGNull));

22 Guide for New Eli Users

END;
e}

@0@<code .HEAD.phi@>@{

#include "err.h"

#define NoErrors (ErrorCount[ERROR]==0)
Q}

The PTG specification, which is introduced by @0@<code.ptg@>@{ and terminated by
@}, is simply a collection of parameterized templates for output. Each template is given a
name, and consists of a sequence of items that will be output in the given order. Quoted C
strings are output as they stand, and each $ stands for one parameter. A text fragment is
constructed according to a particular template by invoking a function whose name is PTG
followed by the template name. This function returns a value of type PTGNode, and must
be provided with one argument of type PTGNode for each parameter.

To construct a text fragment according to the template named Quoted, for example,
invoke PTGQuoted with one argument of type PTGNode. The result will be a value of type
PTGNode that describes the text fragment ", followed by the text fragment described by the
argument, followed by ".

The attribute grammar fragment, which is introduced by @0@<code.1lido@>@{ and ter-
minated by @}, invokes the PTG functions with appropriate arguments. PTGNumb and
PTGName are defined by the LeafPtg module (see Section “PTG Output of Leaf Nodes” in
Specification Module Library: Generating Output). They construct values of type PTGNode
that describe the text fragment consisting of a single integer value or word respectively.
These text fragments are then used in building larger text fragments, and so on.

The translated output should be produced only if no errors were detected by the trans-
lator. NoErrors is a user-defined macro that tests whether any reports of severity ERROR
were issued. NoErrors must be defined as a C macro, in a file of type ‘.HEAD.phi’. This
can be done by a segment of the FunnelWeb file introduced by @0@<code.HEAD.phi@>@{
and terminated by @}.

The error module maintains an array ErrorCount, indexed by severity, each of whose
elements specifies the number of reports issued at the corresponding severity (see Section
“Source Text Coordinates and Error Reporting” in Library Reference Manual). If the ERROR
element of this array is 0, then no reports of severity ERROR have been issued.

In addition to building the C declarations, the attribute grammar fragment computes
the total number of sets and the total number of elements in each set:

ATTR Size: int;
SYMBOL set_body COMPUTE

SYNT.Size=CONSTITUENTS set_element.Sym WITH (int, ADD, ARGTOONE, ZERQ);
END;

ADD, ARGTOONE and ZERO are built-in functions of Eli (see Section “Predefined Entities” in
LIDO Reference Manual).

This computation visits nodes of the subtree rooted in the set_body node. If the node is
a set_element node, function ARGTOONE is applied to the value of the Sym attribute to yield
the integer value 1. If the node has no set_element descendants, then its descendants are
not visited and the function ZERO is invoked with no arguments to yield the integer value 0.

Chapter 2: Example of Eli Use 23

Otherwise the integers computed for the children of the node are combined pairwise in left-
to-right order via the function ADD. See Section “CONSTITUENT(S)” in LIDO Reference
Manual.

Exercises

1.

Request the code generated by the processor from the specification:

-> sets.specs :gencode :viewlist
Find the files generated from code.fw and verify the content of code .HEAD.phi. (Hint:
Re-read the discussion of code.fw.)

Which file contains the definition of the function PTGQuoted? (Hint: Use grep, or create
a ‘tags’ file and then give the command vi -t PTGQuoted.)

Briefly explain the operation of PTGQuoted. How is the text fragment created by this
function printed?
Use lint to search for anomalies in the collection of C routines. Are any of those found
significant? Explain briefly.
Request an interactive debugging session:
-> sets.specs +debug :dbx
(If you prefer to use the GNU debugger gdb, simply replace dbx with gdb).
Set breakpoints to stop the program in PTGQuoted, _PrPTGQuoted and PTGOut. Run

the program with the name of file ‘input’ as its command line argument. What is the
order of the calls to these three routines? Explain briefly.

Redefine the output text so that each array value is indented, and the closing brace is
at the beginning of a line. For example, the array of set names should look like this:
char *name_of_set[] = {
"colors",
"bugs",
"verbs"
};

Generate a translator and verify its correctness.

Chapter 3: Customizing Eli’s Behavior 25

3 Customizing Eli’s Behavior

All derived objects are stored in a directory called the derived object cache, or simply the
cache. The cache also contains a database that stores the depends relationship between the
output and input files of a tool run, and the contains relationship between a list and its
elements. Many of the ways of customizing Eli involve various aspects of the derived object
cache.

Eli can also be used non-interactively, and can be customized by defining shortcuts for
frequently-used derivations.

3.1 Hints on Cache Management

The default location for the cache is a directory named .0DIN in the user’s home directory.
A non-default cache location can be specified by the $0DIN environment variable, or with
an option on the command line. The main reasons for specifying a non-default location for
the cache are to share a common cache with other users, or to locate the cache on a local
disk for more efficient access to derived files.

An Eli session is begun by giving the following command:
eli [-c cache] [-r | -R]

All of the command line arguments are optional, and all affect the cache:
-c cache Use the directory cache as the cache.
-r Reset the cache. This deletes all derived objects currently stored in the cache.

-R Reset the cache and upgrade all tools. This deletes all derived objects currently
stored in the cache, and also installs the most recent versions of all tools.

Cache directories may also be deleted using normal Unix commands whenever they are
not being used by active Eli sessions. If the specified cache does not exist when the eli
command is given, then it will be created and the most recent versions of all tools installed.

There is no limit to the number of cache directories that may exist at one time. You
might choose to have a separate cache for each project you are working on, or you might
choose to have a single cache to hold information for all of your projects. If you choose
multiple caches, each can be smaller than the cache you would use for all projects. When
a project is complete, you can delete all the intermediate objects relating to it by deleting
the cache directory for that project.

Cache contents are architecture dependent, so it is not possible to create a cache on one
architecture and then use that same cache on a different architecture. In order to avoid
this error, Eli creates a separate subdirectory of the cache directory for each host (not
architecture) on which it is invoked. This behavior is unpleasant in a setting where there is
a pool of hosts, all of which have the same architecture, running with a common file server.
If the environment variable ODINVIEW is set, Eli uses the subdirectory name specified by
that variable. (The subdirectory names can be anything; using the host name is simply
convenient.)

The default inter-process communication mechanism for the odin cache manager process
is TCP/IP. If TCP/IP is not available, set the environment variable $0DIN_LOCALIPC and
Unix domain sockets will be used instead.

26 Guide for New Eli Users

3.2 Hints on Session Management

There are two kinds of Eli sessions — interactive and non-interactive. Interactive sessions
are used when the requests being made are ones that Eli can satisfy quickly, and actions by
the user are necessary between requests. During initial development of a specification, when
specification errors prevent Eli from completely satisfying the request, interactive sessions
are very fruitful: The user makes a request, errors are reported, the user corrects the errors
and makes the request again.

One important decision that must be made for either kind of session is the amount of
information that should be provided to the user during that session. (Of course if the session
is interactive, this decision can be changed during the session itself by making appropriate
requests.) Eli is capable of describing at great length what it is doing at any given moment.
Since the purpose of Eli is to suppress the details of the process needed to satisfy your
request, you will probably not want Eli to report those details to you. The Eli variable
LogLevel controls the level at which Eli describes the actions that it is taking. The default
is LogLevel=2. For more information about the effect of different LogLevel values, give the
Eli request LogLevel=?. (This is an example of an Eli help request, described in Section
“The Help Facility” in User Interface.)

The value of the environment variable EDITOR at the time the Eli session starts is the
command that is invoked when the character < ends an input line. (If EDITOR is not defined
when the Eli session starts then vi is assumed.) That value can be changed at any time
during the session by assigning to the environment variable EDITOR:

-> EDITOR=!emacsclient

(Note the use of ! to indicate that the assignment is to an environment variable rather than
to an Eli variable.)

You may wish to make your selection of an editor dependent on some property of the
environment. A typical situation is to use one editor when seated at a workstation and
another when logged in remotely. In this case, create a script ‘my_editor’ that tests the
appropriate environment variables, decides what editor to use, and invokes it. Then set the
value of the environment variable EDITOR to ‘my_editor’.

Users of Gnu Emacs who invoke Emacs only once per login session (i.e. in a window
that is always present) can use the server capability of Emacs. To do this, execute the
command M-x server-start in your Emacs session and use emacsclient as the value of
the environment variable EDITOR. (You will also need to make sure that the etc directory
in your Emacs distribution is on your PATH.) Once this is done, Eli editor invocations will
use buffers in your Emacs session. A common way of utilizing this capability is to invoke
Eli from a sub-shell of your Emacs (created using M-x shell).

Eli consults file ‘Odinfile’ in the current directory for information about the task at
hand. ‘Odinfile’ is used to define one or more targets. Each target defines some product
that can be requested, using the notation target == odin-expression. Here are examples of
the three common kinds of target:

mkhdr == sets.specs :exe
mkhdr is a file target. This line specifies that mkhdr should always be equal to
the derived file object sets.specs :exe. If the command eli mkhdr is given
in a directory with a file ‘0dinfile’ containing this line, it will result in a non-
interactive Eli session guaranteeing that file mkhdr in this directory is up to

Chapter 3: Customizing Eli’s Behavior 27

date. (The same effect can be obtained in an interactive session by responding
to the -> prompt with mkhdr.)

%results == input +cmd=(mkhdr) :stdout

%hresults is a virtual target. A virtual target is simply a name for an odin-
expression, and can be used wherever and odin-expression is required. If the
command eli ’%results>’ is given in a directory with a file ‘Odinfile’ con-
taining this line, it will result in a non-interactive Eli session guaranteeing that
the derived object input +cmd=(mkhdr) :stdout is up to date, and writing
the content to the standard output. (The same effect can be obtained in an
interactive session by responding to the -> prompt with %results>.)

htest ! == . +cmd=diff (Yresults) (result) :run
%test is an executable target. An executable target is a target that is exe-
cutable. If the command eli %test is given in a directory with a file ‘0dinfile’
containing this line, it will result in a non-interactive Eli session guaranteeing
that the derived object input +cmd=(mkhdr) :stdout (named %results) is up
to date, and executing the diff command with this object and the file ‘result’
from the current directory as arguments. Execution will take place in the cur-
rent directory. (The same effect can be obtained in an interactive session by
responding to the -> prompt with %test.)

Chapter 4: System Documentation 29

4 System Documentation

The Eli system documentation is divided into three basic groups:

Tutorial Strategies and examples for using Eli. The purpose of this material is to present
simple techniques that work. Omnly points that we have found important for
most users are covered.

Reference Detailed definitions of notation and behavior. The purpose of this material is
to answer any question that might arise. There is a reference manual for each
of the notations understood by Eli, including the language in which requests
for processor construction are made. All of the products that can be requested,
and all of the parameters that can be used to modify those requests, are the
subject of a separate reference manual. Finally, there is a reference manual for
the on-line documentation browser.

Administration
Strategies for installing, configuring and maintaining Eli. The purpose of this
material is to guide the person responsible for Eli at a particular installation.

All of the documentation is available both on-line and in printed form. Documents are
stored on line as hypertext, and can be used to support the debugging phase of a project.

4.1 How On-line Documentation Supports Debugging

Two levels of debugging are necessary when using Eli:

1. The specifications you present to Eli may be inconsistent or ill-formed. In that case,
Eli will provide error reports in the same way as any compiler. You must correct the
specifications so that they are well-formed and consistent.

2. You have presented a correct specification to Eli, but this specification describes the
wrong problem instance. Now you must determine how the problem instance you have
described differs from the one you are really interested in, and change the specification
accordingly.

On-line documentation for Eli can only provide support for level (1), because level (2) does
not involve symptoms that can be diagnosed by Eli.

Eli presents error reports to a user only on request. The available requests are described
in Section “Diagnosing Specification Inconsistencies” in Products and Parameters Reference
Manual. One of these requests is :help. This request builds a new hypertext subtree
containing the error reports, embedded in the text to which they refer. The files containing
the errors are made accessible to the nodes describing those errors, so that the user can
correct them directly.

To correct a file, move the browser to the node describing the errors in that file. Execute
the browser’s edit command and make whatever changes are necessary. Then exit the editor.

Error reports are also linked to the nodes of the on-line documentation describing the
constructs in which the errors were detected. Thus the user is placed in an environment in
which all of the information needed to diagnose the errors, and the tools needed to correct
them, are immediately at hand.

Index

Index

!

b 27
0
/P 27
-c command line argument..................... 25
-r command line parameter.................... 25
-R command line parameter.................... 25
<

S 10
e 26
>

> 10

AlgScopemodule, 18
attribute........ ... 5
attribute grammar..................... 18, 20, 22
AXIOM « ottt et 4

C

Cconstantooiiiiiiiii i 5
CMACTO ..ttt 20
C-style comment..........oovvvvinunnneennnn 8, 17
C_COMMENTt 17
cache 25
canned description.............. ..., 17
character sequences 4,6
childo 5
LD e 7
combining related specifications........... 20
command line argument......................... 7
command line arguments....................... 25
COMMENT ...ttt 17
computation............. ... ool 4,6
CCOILY e 6

conditional compilation...................... 8

31
conflict, shift-reduce...................... 17
CONSTITUENTSot 22
context, loWwerot 19
context-free grammar...................... 4,15
coupling between specifications............ 20
CCtl? 7
D
dbx. .. 23
debug 23
debuggingl 10, 23, 29
decompositionol 3
definition table..................., 5,7
CAelit? oot e 7
derived file object, output................. 11
derived list object, output................. 11
derived object il 9
derived object cache......................... 25
descriptions of subproblems.................. 6
development ProcCessS...........c.cevvvuurrnnnnnn 13
E
editing........... 16
editing a file object............ ...l 11
EDITOR ..ottt e 26
eli command............ il 25
Eli session.........ccoiiiiiiiiinneenn.. 25, 26
Eli, typicalusecoiiiiiiiiiinnnn. 13
Emacs ... 26
entity....... ... 5, 18
Entity ..o 19
=3 o 10
ERROR. ...t 19, 22
error severity............... 19, 22
ErrorCount..........., 22
A 8
example of debugging......................... 23
example of editing.............. oo 16
example of obtaining help.................... 16
example of requesting source code........... 20
EK B . ittt 9
executable target.................... ... 27
F
feedback totheuser......................... 26
file object, editing......................... 11
file object, output......... ...l 11
filetarget......... il 26
finalization..............o 8
CFINL.Phi’ .t 8
function application................... 5

32

functions, printing........................... 6
functions, text generation................... 6
W 7, 20

BAb. . 23
GeNCOde ... 10, 23
generated program, characteristics.......... 3
generation of program text 6
genericmodulel 7, 18, 20
fgla’ 6
CBNTC L 7
grammar development.......................... 15
grammar rule............. .. 4

H

‘head’ i 22
CHEAD.DRA’ ..\t 8
help ... 9, 16, 29
helprequest to Eli 26
history.............. ...l 16

I

IdDefScope. ... 19
identifier........ ... i 5
identifier table............. ..o, 7
identifier, in odin-expressions 9
include directive............ o .l 7,8
inheritancecoiiiiiiiii 19
INHERITS . .ottt et e e 18
0 U 8
initialization..........coviiiiiiiniiinan. 8
instantiation.............ciiiiiiiiiiii., 18
interactive Eli session..................... 26

LALR(1) condition.............covuiuvinunann... 16
LeafPtg ... 20, 22
lexical analysis..........ooviiiiiiiiiinnnn.. 4
CLEdO7 oot 6
1int .o 23
list object, output................. ... 11
literalcoovniiiiii i 4,7, 17
Loglevel ...t ... 17, 26
lower context.............. il 19

M

macro definition............ i, 8

Guide for New Eli Users

CMAP L 7
MESSAZE « v v vttt ttteteee ettt 19
mRIdN .. 17
MESTT .o 5
module, generic.................. ... 18
MONitoring. ...t 10
multiple caches, 25

N

name of a derived object 9
nestedregions 18
newline character............................ 17
DNOAE. .ottt 4
NOoKey ..o 5
non-interactive Eli session................. 26
nonliteral symbol............................ 17
nonterminal symbol.................. ... 4

@)

object, derived i 9
object, source il 8
odin-expression......... ... 9
‘0dinfile’ ...ttt e 26
0T 7
operator, in odin-expressions................ 9
OULPUL ..ot 6
output text structure...................... 6, 7
output toafile...............oiiiiiiiia.. 11
overload resolution........................ 3,7

P

parsable...........o il 16
PATSET .« 15
DAL 7
PRI 7
PhTASE ..ttt 4
phrase structure...................... 4,6, 7,15
printing functions....................oa 6
processor, token............................. 5
program text generation.................... 6, 7
property definition..............ol 7
DL o 7
PTG specification............................ 22
PTGName . ..o 22
PTGNode ... 22
PTGNULL . ..o s 6
PTGNumb 22
Q

QUETY «ttttttttt et 5

Index

R

RangeScope...........iiiiii 19
RangeUniqueoiiiiiiiiiiina.. 19
region........ ...l 18
regions, nestedl 18
relationshipcooiiiiiiiiiiiiiinnn. 5
requesting source code, example............. 20
TOOT . ottt 4
RootScope. ... 19
rule, Grammar..............oiuuieiininnneeaannn. 4
TULE, SCOPE ...ttt 5
TUD . .ottt e 9
S

scoperules..............ii 5
SeNteNCe ... 4
separate caches 25
severity of errors........................ 19, 22
shift-reduce conflict 17
significant character sequence........... 4,17
singlecache.................. 25
<o o o] 9, 20
source object....... 8
specification types............ ...l 6
CSPECS it 6
standard outputl 11
B =1 % o 7
structured output text 6,7
subproblem........ ..o 3
subproblem descriptions...................... 6
CSYIM? L 7
SYMbOL ..o 4
SYMBOL . .. 18
symbol attribution.............. 19
symbol, nonterminall 4
symbol, terminal 4
syntactic analysis................ 4
system documentation 29

T

tab character............................LL 17
BATZeT 26
template i 6, 22

33
TERM ..o 18
terminal symbol................ 4,17
text fragment.......... i 6
text generation function.................. 6, 22
tOoKen Processorooviiiiiiiiiiiiiiiia 5
tree structure ..., 7
tree structure, meaning of 15
type-‘clp’ file.......... ... 7
type-‘con’ file........... ... il 6
type-‘ctl’ file....... il 7
type-‘delit’ file.........ooiiiiiiiiiineon.n. 7
type-‘eta’ file.......ol 8
type- ‘FINL.phi’ file..................cco.o... 8
type-‘fw’ file...... ... 7, 20
type-‘gla’ file.......l 6
type-‘gnrc’ file........ 7
type- ‘HEAD.phi’ file...................... 8, 22
type- ‘INIT.phi’ file............... ..ot 8
type-‘lido’ file ...t 6
type-‘oil’ file....... il 7
type-‘pdl’ file..........o 7
type-‘phi’ file.......... .. il 7
type-‘ptg’ file.......l 7
type-‘specs’ file............l 6
type-‘str’ file...........o 7
type-‘sym’ file....... 7
types, of input specification................ 6
typicaluseof Eli............................ 13
U
Unique ... 19
Unique module...........ccvviiiiiiininnnnnnn., 18
update ... 5
\Va
viewlist...........iiiillllllllll L 10
virtual targetl 27
\%%
L= o 4 N 10
white space. ... 17
white space, in odin-expressions............. 9

	How Eli Creates a Text Processing Program
	How to Decompose a Text Processing Problem
	Descriptive Mechanisms Known to Eli
	Common Derived Objects
	How to Request Product Manufacture
	How to Invoke Unix Commands

	Example of Eli Use
	Statement of the problem to be solved
	Exercises

	Specifying the desired phrase structure
	Exercises

	Nonliteral character sequences and comments
	Exercises

	Managing source text definitions
	Exercises

	Creating structured output text
	Exercises

	Customizing Eli's Behavior
	Hints on Cache Management
	Hints on Session Management

	System Documentation
	How On-line Documentation Supports Debugging

	Index

