
Oil Reference Manual

$Revision: 1.22 $

Compiler Tools Group
Department of Electrical and Computer Engineering

University of Colorado
Boulder, CO, USA

80309-0425

i

Table of Contents

1 Introduction . 3
1.1 Operator identification . 3
1.2 Coercions . 4
1.3 Sets of possible types . 4
1.4 Classes . 4
1.5 Names for operators, types and classes . 4

2 A review of an example OIL Specification 7

3 OIL’s Specification Language 9
3.1 Identifiers . 9
3.2 Comments . 9
3.3 Statement types . 10

3.3.1 Operator definition . 10
3.3.1.1 Function Signatures . 11

3.3.2 Coercion operator definition . 11
3.3.3 Operator identification . 12
3.3.4 Class definition . 13
3.3.5 Type set definition . 13

4 OIL’s Support Library . 15
4.1 Library Types . 15
4.2 Set of Possible Types . 16
4.3 Validating operator identification . 17
4.4 Simpler operator identification . 17
4.5 Looking at an operator’s type signature . 18
4.6 Coercion sequences . 18
4.7 Instantiate Classes . 18
4.8 Name Functions . 19
4.9 Compile Time . 19

4.9.1 Types . 19
4.9.2 Operators . 19
4.9.3 Argument Signatures . 20
4.9.4 Coercions . 20
4.9.5 Identifications . 20
4.9.6 Classes . 20

ii Oil Reference Manual

5 Relating an OIL specification to library
function calls . 23

5.1 Using Names . 23
5.2 A simple example . 23

5.2.1 Definitions from the specification . 23
5.2.2 Operator Identification . 23
5.2.3 Operator Signatures . 24
5.2.4 Coercion sequence . 24

5.3 A more complex example . 24
5.3.1 Using type sets . 25

5.4 Using Classes . 26

6 Design Hints . 27
6.1 Incremental Design and Implementation . 27
6.2 Identifying Operands . 27
6.3 Error Handling . 27
6.4 Modeling OIL’s function . 27
6.5 Schema Restrictions . 28
6.6 Identification Algorithm . 28

Index . 29

1

This a reference manual for OIL (Eli’s operator identification specification facility.) OIL
is a specification language and a set of library functions used in the specification and im-
plementation of operator identification within a compiler.

The specification language is the means for describing the operator identification for
a compiler’s source language and a mapping into the compiler’s target language. The
support library is the means for using the relationships described in the user’s specification
to implement the desired operator identification in the context of an attribute grammar. The
relationship between a user’s specification and calls on the library functions are elaborated
by means of some examples.

Chapter 1: Introduction 3

1 Introduction

OIL deals with three primary concepts: operators, types and indications. The operators
which OIL refers to are strongly typed functions. The types which are named in an OIL
specification are referred to as ‘primitive types’ but there are also ‘constructed types’ which
are created at compile time. Indications are a name given to a list of operators which may
be identified by an appearance of an indication in an expression.

Although operators, types and indications are primary terms in discussing OIL and
operator identification, the rest of this chapter is devoted to explanations of:

Operator identification::

A review of operator identification by example.

Coercions::

Coercions allow the compiler to use a value of one type where another is spec-
ified.

Sets of possible types::

The set of all the types which an expression might return.

Classes::

A set of operators and coercions which can be instantiated for a newly created
constructed type.

Names:: An enumeration associated with each operator, type and class identifier.

1.1 Operator identification

Anyone familiar with compiler construction is familiar with operator identification but may
not necessarily know it by that name. Thus operator identification is introduced by an
example.

In Pascal the expression x+y can have a number of meanings or it may be invalid. For it
to be valid x and y must refer to type values which allow the identification of a well typed
operator associated with +. The operator identified might be integer addition, real addition
or set union. The operator identified is determined by the types associated with x and y

and be formulated like:

• x and y are both integer then integer addition

• x and y are sets with the same element type then set union

• one of x and y is real and the other is real or integer then real addition

• otherwise x+y is undefined or an error

The + in x+y is called the indication and x and y are the operands. The process of
operator identification chooses a strongly typed operator associated with the indication and
has a type signature which matches the types of the operands. This is a simplification but
it does capture the essentials of operator identification.

The operation of ‘matching’ the operand type with the type signature is really the
relation ‘is coercible to’, see Section 1.2 [Coercions], page 4.

4 Oil Reference Manual

1.2 Coercions

A coercion is a distinguished operator which the compiler may insert in an expression to
make operator identification possible. In the previous section the Pascal expression x+y

could identify a real expression if x’s type was real but y’s type was integer. OIL allows this
to be specified using a coercion from integer to real. Thus whenever an integer is supplied
but a real is required the compiler may apply the coercion to the integer argument and thus
have only real arguments to identify real addition with.

If there is a coercion from type A to type B then type A is said to be ‘coercible to’ type
B.

A coercion sequence is any number of coercions applied in sequence. In OIL a coercion
sequence is used as if it were a single coercion. Thus if type A is coercible to type B and
type B is coercible to type C then there is a coercion sequence from type A to type C. The
elements in the sequence are the coercion operators in the order they need to be applied
to satisfy the type constraint. Thus using a coercion sequence type A may match and
argument of type C.

Coercion sequences lead to a revised definition of ‘coercible to’. If there is a coercion
sequence from type A to type B then type A is said to be ‘coercible to’ type B. Note that
since a coercion sequence may be empty every type is coercible to itself.

1.3 Sets of possible types

Each type has an associated set of possible types. A type B is in the set of possible types
for type A if A is coercible to B.

Likewise an expression may have a set of possible types. Take x+y as an example. The
set of possible types associated with the expression would include the result type of any
operator which can be identified by + and an element from the set of possible types for x
and an element from the set of possible types for y.

Note that the set of possible types is a transitive closure of the relation ‘is coercible to’.
When a new coercion is created then the transitive closure of every type may need to be
updated. But in practice this is not the case and most coercions have no impact on the set
of possible types for most types.

1.4 Classes

Formally OIL’s classes are parametric abstract types. But they may be most easily compre-
hended as a procedure which takes some types as an argument and creates a new type and
adds a set of operators and coercions into an existing type schema. The net effect being
that the new operators may now be identified and the set of possible types for some types
may be increased.

Consider the subrange type constructor in Pascal. It creates a coercion from the subrange
to the base type.

1.5 Names for operators, types and classes

You will want associate semantics to the identifiers in your OIL specification. Names allow
a convenient way of doing that. All types, classes and operators have names associated

Chapter 1: Introduction 5

with them. The name is represented as a definition table key (see Section “The Definition
Table Module” in Definition Table) and can be referenced in your attribute grammar by
the identifier used in the OIL specification.

The name associated with an ADT type, class or operator is accessed by using the unary
functions: OilTypeName, OilClassName and OilOpName.

Chapter 2: A review of an example OIL Specification 7

2 A review of an example OIL Specification

The following is a complete OIL specification which we will analyze more completely later
(see Chapter 5 [Interrelationship], page 23.) But we will briefly review it here to give an
intuitive feel for both the syntax and the semantics of the language.

In our example below is a specification of Pascal’s overloaded operator (‘+’.) It can be
identified with either integer addition (iAdd), real addition (rAdd) or set union (sUnion.)
And we define a coercion operator (Float) to allow integer values to be used where real
values may appear.

OPER iAdd(int_t, int_t): int_t; /* the usual ’+’ operators for Pascal

*/

OPER rAdd(real_t, real_t): real_t;

OPER sUnion(set_t, set_t): set_t;

INDICATION Plus: iAdd, rAdd, sUnion; /* will be identified together */

COERCION Float(int_t): real_t; /* usual Pascal coercion from int to real

*/

An OIL specification defines the identifiers for use in calls to the library functions. The
above specification defines these identifiers:

• int_t, real_t, set_t to be type denotations.

• iAdd, rAdd, sUnion to be typed binary operator denotations with the expected func-
tional signatures.

• Plus to be an operator indication which may be identified with iAdd, rAdd and sUnion.

• Float is defined to be a coercion from int_t to real_t.

For a more in-depth examination of this specification see Section 5.2 [Simple Example],
page 23.

Chapter 3: OIL’s Specification Language 9

3 OIL’s Specification Language

An OIL specification is composed of a list of statements. The statements describe relation-
ships among identifiers which the library functions will interpret as describing an operator
identification scheme.

With the specification language a compiler writer defines four sets of mutually exclusive
identifiers:

• Operators represent both indications and denotations. That is an operator can be
used as an indication and also have a type signature.

• Types represent primitive types. Unlike the types which are instantiations of classes.

• Classes represent parameterized sets of operators. A new version of each operator is
constructed for each instantiation of the class. Likewise each instantiation of a class
creates a new type which is not primitive.

• Type Sets represent a set of primitive types which can be used to construct multiple
instances of an operator; one for each element in the type set.

The rest of this chapter of the manual describes the syntax of the specification language
by covering the three main lexical and syntactic constructs: Identifiers, Statements and
Comments.

3.1 Identifiers

An identifier in an OIL specification is a sequence of characters which:

• begins with an alphabetic character: A-Z, a-z

• continues with an alphanumeric or underscore character: A-Z, a-z, 0-9, .

Examples:

iAdd, Fmul2

Identifiers are defined both explicitly and implicitly. OPER and COERCION statements
explicitly define operators. CLASS statements explicitly define classes. SET statements
explicitly define sets. Types are all implicitly defined; if an identifier appears only in a
function signature or as a type element in a type set expression then it is a type. If the
indication in an INDICATION statement has no defining OPER statement it is implicitly
defined as an operator.

An identifier can only be in one of the sets: operator, type, class or type set.

Constraints: An identifier can denote a type or an operator but not both.

An identifier list is a sequence of identifiers separated by commas.

Since OIL produces names to be used in your attribute grammar, you must not use a
reserved word of your attribute grammar as an identifier in an OIL specification.

Examples:

iAdd,iMul or Fmul, Fadd, Fdiv

3.2 Comments

C-style comments, beginning with /* and ending with */, are allowed in an OIL specifica-
tion. A comment may appear anywhere that white space might be appropriate.

10 Oil Reference Manual

3.3 Statement types

There are five types of statements in OIL:

• Operator definition which defines the functional type signature of one or more op-
erator denotations.

• Coercion operator definition which defines a coercion operator and the ability for
the source type of the coercion operator to be acceptable in place of the destination
type of the coercion operator when performing operator identification.

• Operator identification which defines an operator indication and a set of operator
denotations which the indication may identify.

• Class definition which defines a set of operators to be constructed when a parame-
terized type is instantiated.

• Type set definition which defines an identifier to represent a set of types and allows
explicit multiple operator definitions when used in an operator definition.

3.3.1 Operator definition

The basic form of an operator definition is:

‘OPER’ <Op-name> ‘(’ <arg-list> ‘)’ ‘:’ <result-id> ‘;’

where:

<Op-name> is an operator identifier.
<arg-list> is a list of identifiers separated with commas which
describes the argument signature of the operator.
<result-id> is an identifier which determines the result type of
the operator.

The <result-id> and each identifier in the <arg-list> may be either a primitive type
name, a SET name or if in a CLASS definition then they may refer to the CLASS name
being defined or one of the parameters to the CLASS definition. see Section 3.3.1.1 [Function
Signature], page 11

Constraints: Any given <Op-name> can appear only once in all definition statements.

An example is:

OPER iAdd(int_t, int_t): int_t;

In the example operator definition statement above, ‘iAdd’ is defined to be an operator
and ‘int t’ to be an operand type.

The multiple form of an operator definition is:

‘OPER’ <Op-name-list> ‘(’ <arg-list> ‘)’ ‘:’ <result-id> ‘;’

where:

<Op-name-list> is a list of operators separated by commas.
<arg-list> and <result-id> are as before.

All the operators appearing in <Op-name-list> are given the same functional signature.

Constraints: Each operator in <Op-name-list> must appear only once in any operator
definition.

An example is:

OPER rAdd, rSub, rMul, rDiv (real_t, real_t): real_t;

Chapter 3: OIL’s Specification Language 11

3.3.1.1 Function Signatures

How many and what kind of operator is being defined can vary a great deal depending on
the definition of the identifiers which appear in the function signature. There are essentially
three different kinds of function signatures:

• Simple signature which only references primitive types.

• Class signature which references a class or parameter name, though it may also refer
to primitive types.

• Set signature which references a set name in its signature, though it may also refer to
primitive types.

A simple signature only defines a single operator.

A class signature defines a pattern of a single operator to be created when the class is
instantiated. The actual signature constructed has the class name replaced by the created
type and the parameter names are replaced with the corresponding positional argument
which is used in instantiating the class.

A set signature defines one operator for each element in the value of the referenced set.
Consider the example:

SET s=[a,b];

sop(s):c;

There are two operators with the name sop defined, with the signatures:

sop(a):c;

sop(b):c;

If a set name is referenced more than once in the signature the same value appears in
the corresponding position in the signature. For example consider the specification:

SET s=[a,b];

SET r=[c,d];

OPER sop(s,r):s;

Four operators with the name sop are created. With the four signatures:

sop(a,c):a;

sop(b,c):b;

sop(a,d):a;

sop(b,d):b;

The signature is duplicated once for each value in a unique set name. The set name is
replaced with each value in turn reguardless of how many times the set name is referenced
in the signature.

Constraints:

If an identifier in a function signature is a CLASS name or a parameter to a CLASS
then the operator definition must be in the body of the CLASS definition.

No reference to a SET name may be used in a CLASS operator definition.

3.3.2 Coercion operator definition

The basic form of a coercion operator definition is:

12 Oil Reference Manual

‘COERCION’ <Cop-name> ‘(’ <source-id> ‘)’ ‘:’ <result-id> ‘;’

where:

<Cop-name> is a coercion operator identifier.
<source-id> is an identifier which determines the source type of
the coercion.
<result-id> is an identifier which determines the result type of
the coercion.

The <source-id> and <result-id> may be either a primitive type name, a SET name
or if in a CLASS definition then they may refer to the CLASS name being defined or one
of the parameters to the CLASS definition.

An example is:

COERCION cFloat(int_t): real_t;

In the example coercion operator definition statement above, ‘cFloat’ is defined to be an
operator and, ‘int t’ and ‘real t’ are defined to be a operand types.

Constraints: <Cop-name> can appear in only one definition statement.

3.3.3 Operator identification

The basic form of an operator identification is:

‘INDICATION’ <Op-name> ‘:’ <Op-name-list> ‘;’

where:

<Op-name> is an operator identifier.
<Op-name-list> is list of operator denotations separated by commas.

The order of appearance from left to right of the operators in the <Op-name-list>

determines a search order for the identification process. When an operator identification
operation is performed on <Op-name> then each operator in <Op-name-list> is tried from
left to right.

Constraints:

• All the operator denotations referenced must have signatures of the same length. (i.e. If
the first operator denotation has two arguments all the rest of the operators referenced
must also have two arguments.)

• All operator denotations must have appeared in an operator definition statement.

• <Op-name> must not appear in any other operator identification statements. All poten-
tial operators to be identified by <Op-name> must appear in one operator identification
statement.

An example is:

INDICATION Plus: iAdd, rAdd, sUnion;

In the example operator identification statement above, ‘Plus’ is defined to be an operator
and, ‘iAdd’, ‘rAdd’ and ‘sUnion’ are defined to be operators.

The example defines that ‘iAdd’ will be the first operator tested for identification of
‘Plus’ and ‘sUnion’ would be the last operator tested for identification.

Chapter 3: OIL’s Specification Language 13

3.3.4 Class definition

The form of a class definition is:

‘CLASS’ <Class-name>‘(’ <Param-name-list> ‘)’ ‘BEGIN’ <simple-stmts> ‘END’ ‘;’

where:

<Class-name> is a class identifier.
<Param-name-list> is a list of parameter identifiers separated by
commas.
<simple-stmts> is a set of operator, coercion and indication statements
that will be created by an instantiation of this class.

The declarations in the <simple-stmts> do not define operators and coercions but
patterns for the creation of such operators. When a class is instantiated then the patterns
for that class are used to define the operators and coercions from the patterns.

The type identifiers referenced in the declarations in <simple-stmts> may refer to the
class name(<Class-name>), a specific primitive type or a parameter name(from <Param-

name-list>.) When a class is instantiated a type corresponding to each identifier is used
to create an operator of coercion from the patterns in <simple-stmts>.

3.3.5 Type set definition

The form of set definition is:

‘SET’ <Set-name>‘=’ <set-expression> ‘;’

where:

<Set-name> is a set identifier.
<set-expression> is a expression which defines the types which
are members of the set.

A set expression may be composed of any of the following constructs(where s1,s2... are
set expressions):

• [<Type-name-list>] where <Type-name-list> is a list of one or more primitive type
names.

• <Set-name> which identifies a previously defined type set and yields its value.

• s1 + s2 which yields the union of the two type sets.

• s1 * s2 which yields the intersection of the two type sets.

• s1 - s2 which yields the difference of the two type sets.

Chapter 4: OIL’s Support Library 15

4 OIL’s Support Library

The library functions are grouped according to classes of functions. Within each class a C
definition of the function is presented, followed by a brief description of the semantics of
the function.

The next section describes the five C types used and defined by the library. These types
are defined entirely by the functions in OIL’s library.

The follow-on section describes operator identification using set of possible types which
is the most general identification method supported by OIL.

Should a call to an OIL function for operator identification or coercion sequence con-
struction fail, special values are returned. Functions are supplied to test for these special
values allowing production of error messages for these error cases.

Besides operator identification using set of possible types, there is also a simpler iden-
tification algorithm which is strictly bottom up. It is useful when the full power of OIL is
not necessary and the efficiency of a one pass algorithm can be utilized.

Looking at an operator’s type signature is fundamental to propagating the constraints
of an operator’s type signature out from the node it labels. OIL supplies a function to
examine any given operator’s function signature,

Coercion sequences are fundamental to most uses of OIL and constructing and examining
coercion sequences is critical to examining them for code generation purposes.

Creating instances of specified classes. OIL’s CLASS construct allows for easy support of
most type constructors. OIL allows a type constructor to be specified and then instantiated
to create a type which conforms to the specification of the CLASS.

Names are an enumeration of the identifiers in the specification for easy comparisons.
When a class is instantiated all its operators have new unique signatures based on the
created type, but the names of corresponding operators are the same as those used in the
specification of the class operator.

Construction of types, operators, identifications and classes can be performed by the
library functions. Thus should a particular application need to build and define a unique
class, coercion or any OIL object it can be done during the compilation using these functions.

4.1 Library Types

The semantics of the functions are described in terms of the basic types understood by OIL.

tOilType This type is associated with the identifiers defined as (type) in the OIL specifi-
cation and represents type denotations. It is used to define function signatures
for operators and thus the coercion graph.

tOilOp This type is associated with the identifiers defined as (operator) in the OIL
specification. An element of this type can have associated with it either a
function signature or a list of identifiable operators. All coercions are operators.

tOilTypeSet

Is a private type of the OIL library functions which represents a set of type
denotations and represents the set of possible types concept.

16 Oil Reference Manual

tOilClass

This type is associated with identifiers defined as (class) in the OIL specification
and identifies the set of operators and coercions defined for that class. It is used
as the handle for instantiating a class. The instantiation operation creates a
new object of type: tOilType and adds new instances of the operators and
coercions defined for the class.

tOilCoercionSeq

This type represents a sequence of coercion operators which will transform a
value of one type into a desired type. The coercions sequence may be empty
or of an arbitrary length. Each element in a coercion sequence is a coercion
operator.

There is one other type which is important for use of the ADT and that is the name of
a class, type or operator. A name is represented as a definition table key (see Section “The
Definition Table Module” in Definition Table) and each identifier in the OIL specification
has a unique name associated with it. This allows a class operator to be treated the same
regardless of its arguments. But since the argument signature of an instantiated class
operator will refer to the types used to instantiate the class, the type specific information
can be referenced as needed.

4.2 Set of Possible Types

The functions OilIdResultTS* identify the set of possible result types given the operator
indication (oi) and the set of possible result types (ats*) for each operand.

The set of types (tOilTypeSet) returned describes the the union of the result types of any
of the operators which can be identified by (oi) with any combination of argument types
selected by the argument type sets, (at*.) Also in this set are types which can be reached
from identified operators by means of a coercion sequence.

tOilTypeSet OilIdResultTS1(oi:tOilOp, ats:tOilTypeSet);

tOilTypeSet OilIdResultTS2(oi:tOilOp, ats1,ats2:tOilTypeSet);

tOilTypeSet OilIdResultTS3(oi:tOilOp, ats1,ats2,ats3:tOilTypeSet);

The functions OilIdOpTS* identify an operator given the operator indication (oi), the
result type (rt) and the sets of possible argument types (ats*.)

tOilOp OilIdOpTS1(rt:tOilType, oi:tOilOp, ats:tOilTypeSet);

tOilOp OilIdOpTS2(rt:tOilType, oi:tOilOp, ats1,ats2:tOilTypeSet);

tOilOp OilIdOpTS3(rt:tOilType, oi:tOilOp, ats1,ats2,ats3:tOilTypeSet);

Suppose that an operator indication can identify only a single operator, but it is used
in an inappropriate context for that operator. Functions OilIdOpTS* will return an invalid
operator in that case. In many situations, however, it is preferable to return the one possible
operator and report errors in the context. The function OilNoOverload is used in these
situations.

tOilOp OilNoOverload(oi:tOilOp, OilIdOpTS*(...));

Chapter 4: OIL’s Support Library 17

The function OilTypeToSet constructs a set of types from a given type denotation. The
set of types returned contains t and all the type denotations which can be reached from t
by any sequence of coercion operators.

tOilTypeSet OilTypeToSet(t:tOilType);

The function OilSelectTypeFromTS selects a type from a given set of types. The type
selected is the type which is both in the set ts and can be coerced to all the types in the
set.

tOilType OilSelectTypeFromTS(ts:tOilTypeSet);

The following equation is true for any type t:

OilSelectTypeFromTS(OilTypeToSet(t)) = t

The function OilBalance selects a type which can be coerced to all the elements which
sets ts1 and ts2 have in common. This operation corresponds with function of type bal-
ancing in typed expression analysis from compiler and programming language theory.

tOilType OilBalance(ts1,ts2:tOilTypeSet);

The following is true for all type sets ts1 and ts2:

OilBalance(ts1,ts2) = OilSelectTypeFromTS(ts1 AND ts2)

One other important operation on sets is a test for set membership. This operation is
performed on a type set by the function OilSetIncludes, which returns true if the set s
includes the type t.

int OilSetIncludes(s:tOilTypeSet, t:tOilType);

OilSetIncludes will be the usual mechanism for testing if a expression can be coerced to
a particular type. The expression’s set of possible types is calculated and OilSetIncludes

is used to check if the type in question is in the set of possible types.

4.3 Validating operator identification

The function OilIsValidOp validates that a given value denotes a valid operator. Since any
operator identification operation will return some operator indication, we need to validate
that the operator identified was not the catchall illegal operator.

int OilIsValidOp(op: tOilOp);

4.4 Simpler operator identification

The function OilIdOp* can identify the operator associated with the indication (oi) which
has an argument type to which (at) can be coerced. In general these are less powerful than
the ‘set of result type’ operators, but for simple languages they are both faster and easier
to use. You can probably use these if you can identify the correct operator from the the
types of the operands alone without regard to the context.

tOilOp OilIdOp1(oi: tOilOp, at: tOilType);

tOilOp OilIdOp2(oi: tOilOp, at1,at2: tOilType);

tOilOp OilIdOp3(oi: tOilOp, at1,at2,at3: tOilType);

18 Oil Reference Manual

4.5 Looking at an operator’s type signature

The function OilGetArgType allows us to get the type of the n’th argument (arg) of an
operator(op.) The 0’th argument returns the result type from the function signature.

tOilType OilGetArgType(op:tOilOp, arg:int);

4.6 Coercion sequences

The function OilCoerce allows us to construct a sequence of coercion operators from type
t1 to t2. The first operator in the sequence (see OilHeadCS below) will have a result type of
t2. The last operator in the sequence will have a source type of t1. OilCoerce will always
return a coercion sequence. But if there is no valid coercion sequence between the types
then the catchall error coercion sequence is produced.

tOilCoercionSeq OilCoerce(t1,t2:tOilType);

These operations on coercion sequences (tOilCoercionSeq) allow us to step through a
coercion sequence and perform an action for each operator in the sequence.

The function OilEmptyCS will test a coercion sequence to see if it is empty. The result
will be true is the argument is empty and false otherwise.

The function OilHeadCS returns the first operator in the sequence. The operator re-
turned by OilHeadCS will have been defined by a coercion statement. Or it will be the error
operator in the case of an error coercion sequence.

The function OilTailCS returns the rest of the sequence once the first operator in the
sequence is removed.

int OilEmptyCS(cs: tOilCoercionSeq);

tOilOp OilHeadCS(cs: tOilCoercionSeq);

tOilCoercionSeq OilTailCS(cs: tOilCoercionSeq);

The function OilIsValidCS allows us to validate a coercion sequence. It is crucial to
detect invalid typing for a subexpression since every call to OilCoerce will return a coercion
sequence and we need to know if the sequence returned was the catchall error coercion.

int OilIsValidCS(cs: tOilCoercionSeq);

4.7 Instantiate Classes

When a class is instantiated a new type is created and the set of operators and coercions
defined for that class are created using the created class and the types indicated by the pa-
rameters to build the actual function signatures for the created operators. The ‘is coercible
to’ relation is enhanced by all the coercions defined by the instantiation.

Classes can be instantiated by calling one of the functions:

tOilType OilClassInst0(c:tOilClass, n:DefTableKey);

tOilType OilClassInst1(c:tOilClass, n:DefTableKey, at:tOilType);

tOilType OilClassInst2(c:tOilClass, n:DefTableKey, at1,at2:tOilType);

Constraints:

Chapter 4: OIL’s Support Library 19

The number of parameters defined for the class must match the number of types supplied
as arguments.

4.8 Name Functions

Each type, operator and class has a name associated with it. There is a function for
retrieving the name associated with a specific type during attribution:

DefTableKey OilTypeName(t:tOilType);

DefTableKey OilOpName(op:tOilOp);

DefTableKey OilClassName(c:tOilClass);

If the identifier MyType is a type in a specification then the C symbol MyType will have
the value of OilTypeName(MyType).

4.9 Compile Time

The OIL library has all of the necessary functions for the construction of OIL entities during
the execution of the generated compiler. This capability allows the changing of the OIL
schema in more detailed ways than simply instantiating an already specified class. The
different capabilities for modifying the schema are:

Type Constructor
A new type may be constructed without using Classes.

Operator Constructor
A new operator may be explicitly constructed with a given signature(remember
operators are use to represent indications also.)

Signature Constructor
An argument signature for an operator can be constructed from types.

Coercion Constructor
A properly constructed operator can be declared to be a coercion.

Identification Constructor
Any operator can be defined to ‘indicate’ any other operator.

Class Constructor
Can be built from class operators and coercions.

4.9.1 Types

In addition to class instantiation, a new type may be constructed with the function
OilNewType. Its only argument is the name to be associated with the new type.

tOilType OilNewType(id:DefTableKey);

4.9.2 Operators

Constructing a new operator is a two step process, first a new argument signature must
be constructed and then a new operator with that signature can be constructed using the
function OilNewOp. Besides the argument signature, OilNewOp requires the name of the
new operator(id), and the cost of the new operator(cost.)

tOilOp OilNewOp(id:DefTableKey,sig:tOilArgSig,cost:int);

20 Oil Reference Manual

4.9.3 Argument Signatures

Argument signatures are built in two steps: an empty signature is constructed
with OilNewArgSig and then a type is pushed onto the front of the signature using
OilAddArgSig.

tOilArgSig OilNewArgSig(dummy:int);

tOilArgSig OilAddArgSig(arg:tOilType, sig:tOilArgSig);

Note that by convention, the last type pushed onto the signature is the result type of
the created operator.

4.9.4 Coercions

Any operator with an argument signature of length 2 can be a coercion by simply applying
OilAddCoercion on it.

int OilAddCoercion(op:tOilOp);

Constraints

A check is not made that the signature is of length 2.

4.9.5 Identifications

A relationship between an operator indication (ind) and an operator (op) is established by
simply supplying them to the OilAddIdentification function. OilAddIdentification

returns the value of op.

tOilOp OilAddIdentification(ind, op:tOilOp);

Constraints

A check is not made regarding the redundancy of the new identification with respect to
the existing schema. You can have ambiguity of which operator is identified by any given
indication and operand signature. OIL will choose the most recently declared, least cost
identification.

4.9.6 Classes

Classes are very complex entities and are constructed in stages. First an empty class in
created using OilNewClass. The argument id specifies the name of the class and the
argument argNum specifies how many parameters the class has.

tOilClass OilNewClass(id:DefTableKey,argNum:int);

To an existing class(c) we can add an operator with a given class signature(sig) and
given cost(cost) with the function OilAddClassOp.

tOilClassOp OilAddClassOp(id:DefTableKey,sig:tOilClassArgSig,cost:int, c:tOilClass);

With a class operator we can create an identification of an instantiated class operator(op)
by an existing operator(ind) with the function OilAddClassOpId.

int OilAddClassOpId(ind:tOilOp,op:tOilClassOp);

The function OilAddClassCoercion is used to define an existing class operator(op) to
be a coercion.

int OilAddClassCoercion(op:tOilClassOp);

Building a class argument signature is similar to constructing a simple argument signa-
ture but it is complicated by the fact that a class argument needs to be described in terms

Chapter 4: OIL’s Support Library 21

of a parameter binding. A class argument’s parameter binding determines the value of the
parameter when the class is instantiated. Like simple signatures we first build an empty
class signature and then push arguments onto it. An empty class signature is created with
OilNewClassSigArg and an argument description is added with OilAddClassSigArg.

tOilClassArgSig OilNewClassSigArg(dummy:int);

tOilClassArgSig OilAddClassSigArg(

td:tOilClassSigArgDesc,

st:tOilType,

pi:int,

cs:tOilClassArgSig

);

The extra arguments to OilAddClassSigArg describe the possible bindings which will
instantiate the class signature.

td Can be eClassRef to indicate that a reference to the created type replaces
this argument, eParamRef to indicate that one of the parameters to the class
instantiation will replace this argument or eSpecTypeRef to indicate that a
specific type will replace this argument.

st Specifies which explicit type will replace this argument.

pi Selects which parameter of the class instantiation will replace this argument.

Chapter 5: Relating an OIL specification to library function calls 23

5 Relating an OIL specification to library function
calls

To explain the relationship between the specification and the abstract data type we will
examine different extractions from some possible specifications and review the behavior of
some of the related functions in the abstract data type.

5.1 Using Names

Each entity defined in an OIL specification is represented by a definition table key. The
OIL value is accessible as a property of that definition table key. For example, suppose
that iAdd was defined by an OPER statement in OIL. This would result in a known key
(see Section “How to specify the initial state” in Definition Table) iAdd. iAdd would also
have an OilOp property whose value was the actual OIL operator (of type tOilOp). Thus
the actual OIL operator corresponding to iAdd could be obtained by the function call
GetOilOp(iAdd,OilInvalidOp) (see Section “Behavior of the basic query operations” in
Definition Table).

In order to avoid the overhead of querying a property for constant information, OIL also
defines an identifier as the actual OIL operator. This identifier is constructed by prefixing
the OIL identifier with OilOp. Thus the identifier OilOpiAdd denotes the value that would
be obtained from the function call GetOilOp(iAdd,OilInvalidOp).

Similar conventions are used for OIL types and OIL classes: The OIL identifier denotes
a known key, and the actual OIL entity (of type tOilType or tOilClass respectively) is
denoted by prefixing either OilType or OilClass to that identifier. A known key denoting
an OIL type also has an OilType property, and a known key denoting an OIL class has an
OilClass property.

5.2 A simple example

Let us consider the following OIL specification:

iAdd (int_t, int_t): int_t; /* the usual ’+’ operators for Pascal */

rAdd (real_t, real_t): real_t;

sUnion (set_t, set_t): set;

Plus: iAdd, rAdd, sUnion; /* will be identified together */

COERCION Float(int_t): real_t; /* usual Pascal coercion from int to real */

5.2.1 Definitions from the specification

All of the identifiers in this specification will denote values to the library functions. The
functions in the library will be applied to values constructed from these identifiers and will
return values represented by these identifiers.

5.2.2 Operator Identification

The most basic operation is that of operator identification so we will start there. When se-
mantically analyzing a binary expression formed with a plus sign (+), the compiler would use
the function OilIdOp2 applied to the value denoted by Plus (which indicates the syntactic
operator) and the types of the operands to the plus sign.

24 Oil Reference Manual

The invocation OilIdOp2(Plus, int_t, real_t) would return the operator rAdd be-
cause int t was coercible to real t. Similarly :

OilIdOp2(Plus, set_t, set_t) would return sUnion

OilIdOp2(Plus, int_t, int_t) would return iAdd

OilIdOp2(Plus, real_t, real_t) would return rAdd

Any combination of operand types like real t and set t would return a value denot-
ing an erroneous operator. Example: OilIsValidOp(OilIdOp2(Plus, real_t, set_t)

) would return an integer value of 0.

5.2.3 Operator Signatures

Once we have identified an operator will need to know its type signature so that we may
return the type of the subexpression computed by the operator and so we may determine
the types required by the operator from its respective operands. The function OilGetArg

gives us that facility.

The expression OilGetArg(iAdd, 0) would return int t as the type of the result of the
operator iAdd. Likewise OilGetArg(sUnion, 1) would return set t as the required type
of the first operand to the ‘sUnion’ operator.

5.2.4 Coercion sequence

Once we have the type returned by an operator and know the type required of this sub-
expression (from the parent context) we may need to apply a sequence of coercions on
the result of the operator to satisfy the requirements of the parent context. The function
OilCoerce supplies the necessary function.

In the case of our example we might require a real t result from an iAdd operator
(which returns int t.) The expression OilCoerce(int_t, real_t) would return a coercion
sequence which represented the coercion of an int t type value to a real t type value. This
coercion sequence (call it cs) would then be analyzed with the functions: OilEmptyCS,
OilHeadCS and OilTailCS. The expression OilHeadCS(cs) would evaluate to Float and
OilEmptyCS(OilTailCS(cs)) would evaluate to true. These expressions describe the
fact that only the coercion operator Float was necessary to transform int t to real t.

If no coercions were necessary then OilEmptyCS(cs) would have yielded the value true.
Likewise to detect an impossible coercion, the function OilIsValidCS would be used. The
expression OilIsValidCS(OilCoerce(real_t, set_t)) would yield the value false to
indicate that such a coercion was not possible.

5.3 A more complex example

Not all operator identification schemes can be implemented with the simple bottom-up
type evaluation shown in the previous section. Sometimes the desired result type will affect
which operator denotation is identified with a given operator indication. OIL supplies this
capability with the set of types operations.

Below is an example OIL specification which is designed to use set of types. The spec-
ification shows that there are two multiplication operators(sMulS sMulD) on type single.

Chapter 5: Relating an OIL specification to library function calls 25

One multiplication operator returns a double length result (double) the other returns a
single length result(single.) These declarations have a natural correspondence with many
machine architectures. The operator indication Mul is defined to identify either sMulS or
sMulD.

sMulS (single, single): single;

sMulD (single, single): double;

dMulD (double, double): double;

COERCION iCvtStoD (single): double;

Mul: dMulD, sMulD, sMulS

5.3.1 Using type sets

To use type set functions we must begin with constructing the possible result type set of a
terminal. For this we use the function OilTypeToSet. Like so:

OilTypeToSet(single) yields [single, double]

OilTypeToSet(double) yields [double]

For the rest of this example we will use the identifiers ss and ds to represent the type
sets for single and double, respectively.

To analyze an entire expression with type sets we must also be able to determine the set
of types associated with an operator indication and its set of operands. For this we use the
OilIdResultTS* functions. Like so:

OilIdResultTS2(Mul, ss, ss) yields [single, double]

OilIdResultTS2(Mul, ds, ss) yields [double]

OilIdResultTS2(Mul, ds, ds) yields [double]

When we get to the root of an expression (like in an assignment) we would then use a
desired type determined from the context of the root of the expression (like the destination
type of the assignment) to determine which operator we wanted to select. For this we use
the OilIdOpTS* functions. Like so:

OilIdOpTS2(single, Mul, ss, ss) yields sMulS

OilIdOpTS2(double, Mul, ss, ss) yields sMulD

OilIdOpTS2(double, Mul, ds, ss) yields dMulD

By using type sets, the operator indication Mul with single operands can identify sMulD,
thus directly producing a double result; whereas with the simple scheme used previously
(see Section 5.2 [Simple Example], page 23.) an additional coercion would be needed to
return a double result.

26 Oil Reference Manual

5.4 Using Classes

There are three steps to using classes: (1)specifying them with OIL, (2)instantiating them
using the OilClassInst* functions and (3)identifying the enriched indication mappings
with enriched coercion graph.

The following OILspecification allows us to define any number of Sets during compila-
tion. And we specify the overloading of the ‘+’(loPlus) operator to allow set union.

CLASS Set(element) BEGIN

COERCION coElemToSet(element):Set;

OPER soUnion(Set,Set):Set;

END;

OPER soIadd(tInt,tInt):tInt;

OPER soRadd(tReal,tReal):tReal;

INDICATION loPlus: soIadd, soRadd, soUnion;

We can then construct a simple binary expression compiler which uses a constant set for
one of its possible operand types.

NONTERM Expr: op:tOilOp, st:tOilType;

RULE Dyadic: Expr::= Term Ind Term

STATIC

Expr.st:= OilClassInst1(Set, Set_name, tInt);

Expr.op:= OilIdOp2(Ind.op, Term[1].type, Term[2].type)

END;

NONTERM Term: type:tOilType;

RULE Set: Term::= ’s’

STATIC Term.type:= INCLUDING Expr.st END;

RULE Integer: Term::= ’i’

STATIC Term.type:= tInt END;

RULE Real: Term::= ’r’

STATIC Term.type:= tReal END;

NONTERM Ind: op:tOilOp;

RULE Plus: Ind::= ’+’

STATIC Ind.op:= loPlus END;

We use the following request to construct the compiler:

test3.specs :exe>test3.exe

Chapter 6: Design Hints 27

6 Design Hints

Some ‘usual’ problems in operator identification are presented with some suggested work-
arounds using OIL(along with general guidelines for effective use of OIL.)

6.1 Incremental Design and Implementation

It is relatively easy to design and implement with OIL in incremental steps. One can work
with the atomic/primitive types of your schema first and get the desired behavior with only
identification. You can then add coercion sequence construction. And then work on the
class specifications. Last of all one should work on compile time entity definition. These
guide lines can be easily ignored but I would suggest that you find replacements for these
rules rather than not do incremental design and implementation.

6.2 Identifying Operands

For some problems it is easier to identify the operand types and associated coercion se-
quences independently of the operator. When using OIL to select addressing modes for
assembly language this is often the case as the instruction set is factored into operation and
operand address. Operations can be factored into classes which support different operand
address mode signatures. The classes can be defined as an indication and the different
patterns of address modes are the strongly typed data flow operators for the instruction.

If we didn’t use this method of ‘instruction classes’ then we would have to duplicate the
address mode patterns for each instruction in the class. This would be time consuming,
redundant, and a strain on our name generation faculties. And such a multiplicity of names
would cause its own confusion, reducing the benefit of using OIL.

6.3 Error Handling

There are two ways to handle errors with OIL: use your own error type and use OIL’s. Each
has its own advantages.

OIL’s error type is OilInvalidType and is by definition coercible to and from any type.
Thus once an expression is assigned this value it will make an end-run on OIL’s strong typing
and match any operator which satisfies the other argument constraints. In the degenerate
case where all operands are OilInvalidType then any identifiable operator will be chosen.

If your own type is used(say ErrorType) you must define an operator with it in its
signature(the only way to define a type other than class instantiation.) By not having any
type coercible to it no operator will be identified and thus no valid operator will be returned
and the function OilIsValidOp will return false allowing easy error detection.

The error operator(OilInvalidOp) has a type signature of all OilInvalidType. Thus if
it is identified, which in the error case it is, no type errors will be propagated up or down
the tree.

6.4 Modeling OIL’s function

If you need to model OIL in your compiler design, one of the most convenient ways is
to consider the set of declarations which the OIL library manages as a database. This

28 Oil Reference Manual

data base is initialized by the OIL specification and modified and accessed via the library
functions.

6.5 Schema Restrictions

OIL has a very simple schema model. All of the library routines only add declarations to an
OIL schema. There is no way to remove a declaration from an OIL schema once it has been
added. This can have two impacts on your use of OIL. Every added declaration increases
the cost of an identification which it may impact. Once an identification is added to the
schema it may satisfy an identification request, the only way to prevent it is to control what
kinds of requests are made.

6.6 Identification Algorithm

OIL has a two level search strategy: minimum cost identification and if costs are equal the
most recent identification added to the schema.

Index 29

Index

A
abstract data type . 23
argument type . 16, 18

B
balancing . 17

C
class definition . 10, 13
classes . 9
coercion . 7, 11, 17, 24
coercion operator . 17
coercion operator definition 10, 11
coercion sequence . 16, 18, 24
coercion sequence, empty . 18
coercion sequence, error . 18
coercion sequence, head of 18
coercion sequence, tail of 18
creating new names . 19

D
double . 25

E
empty coercion sequence . 18
error coercion . 18
error coercion sequence . 18
expected argument type . 18

H
head of coercion sequence . 18

I
identifier . 7
illegal operator . 17
impossible coercion . 24
incremental design . 27

L
library functions . 15

M
multiple operator definition 10

N
names . 4, 19, 23

O
OIL comments . 9
OIL identifiers . 9
OIL library . 15
OIL specification . 9
OIL statements . 9, 10
OilAddArgSig . 20
OilAddClassCoercion . 20
OilAddClassOp . 20
OilAddClassOpId . 20
OilAddClassSigArg . 21
OilAddCoercion . 20
OilAddIdentification . 20
OilBalance . 17
OilClassInst0 . 18
OilClassInst1 . 18
OilClassInst2 . 18
OilClassName . 19
OilCoerce . 18
OilEmptyCS . 18
OilGetArg . 24
OilGetArgType . 18
OilHeadCS . 18
OilIdOp1 . 17
OilIdOp2 . 17
OilIdOp3 . 17
OilIdOpTS1 . 16
OilIdOpTS2 . 16
OilIdOpTS3 . 16
OilIdResultTS1 . 16
OilIdResultTS2 . 16
OilIdResultTS3 . 16
OilIsValidCS . 18
OilIsValidOp . 17
OilNewArgSig . 20
OilNewClass . 20
OilNewClassSigArg . 21
OilNewOp . 19
OilNewType . 19
OilNoOverload . 16
OilOpName . 19
OilSelectTypeFromTS . 17
OilSetIncludes . 17
OilTailCS . 18
OilTypeName . 19
OilTypeToSet . 17
operator definition . 10
operator denotation . 7, 24
operator identification 10, 12, 23
operator indication 7, 16, 24

30 Oil Reference Manual

operator signature . 24
operators . 9
overloaded operators . 7

P
PASCAL . 7, 23
possible result types . 16

R
result type . 16, 18

S
selected type . 17
sequence of coercions . 18, 24
set of types . 15, 16, 24
signature . 10, 12, 18, 24

single . 25
source type . 18
support library . 15

T
tail of coercion sequence . 18
tOilArgSig . 20
type balancing . 17
type denotation . 7, 17
type set . 9, 10, 15, 25
type set definition . 13
type signature . 18
types . 9

V
valid operator . 17
validating a coercion sequence 18
validating operator identification 17

	Introduction
	Operator identification
	Coercions
	Sets of possible types
	Classes
	Names for operators, types and classes

	A review of an example OIL Specification
	OIL's Specification Language
	Identifiers
	Comments
	Statement types
	Operator definition
	Function Signatures

	Coercion operator definition
	Operator identification
	Class definition
	Type set definition

	OIL's Support Library
	Library Types
	Set of Possible Types
	Validating operator identification
	Simpler operator identification
	Looking at an operator's type signature
	Coercion sequences
	Instantiate Classes
	Name Functions
	Compile Time
	Types
	Operators
	Argument Signatures
	Coercions
	Identifications
	Classes

	Relating an OIL specification to library function calls
	Using Names
	A simple example
	Definitions from the specification
	Operator Identification
	Operator Signatures
	Coercion sequence

	A more complex example
	Using type sets

	Using Classes

	Design Hints
	Incremental Design and Implementation
	Identifying Operands
	Error Handling
	Modeling OIL's function
	Schema Restrictions
	Identification Algorithm

	Index

