
Name analysis according to scope rules

Uwe Kastens

University of Paderborn
D-33098 Paderborn

Germany

$Revision: 1.27 $

i

Table of Contents

1 Tree Grammar Preconditions 3

2 Basic Scope Rules . 5
2.1 Algol-like Basic Scope Rules . 7
2.2 C-like Basic Scope Rules . 9
2.3 C-like Basic Scope Rules Computed Bottom-Up 11

3 Predefined Identifiers . 13

4 Joined Ranges . 17
4.1 Joined Ranges Algol-like . 18
4.2 Joined Ranges C-like . 18
4.3 Joined Ranges C-like Bottom-up . 18

5 Scopes Being Properties of Objects 21
5.1 Scope Properties without left-to-right Restrictions 22
5.2 Scope Properties C-like . 24
5.3 Scope Properties C-like Bottom-Up . 25

6 Inheritance of Scopes . 27
6.1 Inheritance with Algol-like Scope Rules . 31
6.2 Inheritance with C-like Scope Rules . 32
6.3 C-like Inheritance Bottom-Up . 32

7 Name Analysis Test . 35

8 Environment Module . 37
8.1 Exported types and values . 37
8.2 Operations to build the scope tree . 38
8.3 Operations to establish inheritance . 38
8.4 Operations to establish bindings . 38
8.5 Operations to find bindings . 39
8.6 Operations to find additional bindings . 40
8.7 Operations to examine environments . 40

Index . 43

1

Languages usually use names to identify objects. An object is created by an explicit
or implicit definition and bound to a name. In a certain range of the text occurrences
of that name refer to that object. The scope rules of the language determine where that
binding holds. For language implementation a unique name (key) is created for each dis-
tinct object and associated to identifiers within the scope of that binding. Name analysis
is completed by certain checks of relationships between identifier occurrences as required
by the language, e.g. existence of a definition for each identifier use, multiple definitions
(See Section “Common Aspects of Property Modules” in Association of properties to defi-
nitions, see Section “Check for Unique Object Occurrences” in Association of properties to
definitions), or identifier use before its definition (see Section “Set a Property at the First
Object Occurrence” in Association of properties to definitions).

This library contains a set of modules which can be used to implement the name analysis
task according to a large variety of language rules. The results of these modules are used
to check required relationships between identifier occurrences and to solve further subtasks
of language implementation, such as type analysis or transformation. Solutions of these
tasks are supported by modules of other libraries: Section “Property Library” in Associa-
tion of properties to definitions, Section “Type Analysis” in Type analysis tasks, Section
“Generating Output” in Tasks related to generating output.

The module support for name analysis is decomposed into subtasks of increasing com-
plexity. They are described in subsections each. There you find three solution variants for
Algol-like, C-like scope rules, and C-like scope rules computed bottom-up while the input
is read:

The chapter is structured as follows:

Preconditions

Requirements for the user’s tree grammar

Basic Scope Rules

Modules for basic scope rules

Predefined Identifiers

Modules that introduce predefined entities

Joined Ranges

Several subtrees form one conceptual range

Scope Properties

Scopes being propagated as object properties

Inheritance of Scopes

Scopes inherited by other scopes

Name Analysis Test

Test output for name analysis

Environment Module

Implementation of the Contour-Model

The use of these modules is demonstrated and explained in Eli’s tutorial on name anal-
ysis. (see Section “Overview” in Tutorial on Name Analysis).

It contains three complete executable specifications called

2 Name analysis according to scope rules

AlgLike.fw,

CLike.fw, and

BuCLike.fw

You can obtain a copy of these specifications by calling Eli and requesting

$elipkg/Name/Examples > .

This request creates a subdirectory Examples in your current working directory con-
taining the example specifications, test input files, and an Odinfile for automatic regression
testing.

Chapter 1: Tree Grammar Preconditions 3

1 Tree Grammar Preconditions

Names are usually represented by identifier terminals. Their notation is determined by a
scanner specification. The grammar has one (or several) terminals representing identifiers,
e.g. Ident, as in the running example. The encoding of a particular identifier as computed
by a scanner processor is available in contexts where an identifier terminal occurs.

Identifiers occur in different contexts: Defining and applied occurrences, or different
kinds of identifiers (variables, labels, etc.) may be distinguished. Usually the concrete
syntax is designed first, and the different computational roles of identifiers are incrementally
developed during the design of the .lido specification. Hence, it is recommended NOT to
make the distinction in the concrete syntax. It should have the terminal Ident in any
context. It is rather recommended to distinguish them by LIDO RULEs.

Our running example has the concrete productions

ObjDecl: TypeDenoter Ident.

TypeDenoter: Ident.

Variable: Ident.

We distinguish the different roles of identifiers by introducing new symbol names in the
corresponding LIDO RULEs:

RULE: ObjDecl ::= TypeDenoter DefIdent END;

RULE: TypeDenoter ::= TypeUseIdent END;

RULE: Variable ::= UseIdent END;

Furthermore, we have to add the necessary chain RULEs:

RULE: DefIdent ::= Ident END;

RULE: UseIdent ::= Ident END;

RULE: TypeUseIdent ::= Ident END;

The name analysis modules require that identifier occurrences are represented by nonter-
minals, like DefIdent, UseIdent, TypeUseIdent as in the example. Each of these symbols
has to have an attribute named Sym of type int representing the identifier encoding. A spec-
ification using these modules has to contain suitable computations of the Sym attributes.
For our example they may be specified like:

ATTR Sym: int SYNT;

SYMBOL IdentOcc COMPUTE SYNT.Sym = TERM; END;

SYMBOL DefIdent INHERITS IdentOcc END;

SYMBOL UseIdent INHERITS IdentOcc END;

SYMBOL TypeUseIdent INHERITS IdentOcc END;

If your language does not syntactically distinguish between defining and applied identifier
occurrences, i.e. objects are introduced by using their name, the above distinction is not
necessary. You just introduce DefIdent symbols for all occurrences.

Your grammar should have a symbol representing a phrase that contains all (defining
and applied) occurrences of a name space. It is usually the root of the whole grammar, e.g.
in the running example the symbol Program.

If your language has hierarchically nested ranges defining boundaries for the scope of
definitions, the abstract syntax should have one or several symbols, e.g. Range, Block,

4 Name analysis according to scope rules

Routine, each representing a range of a name space. If the language does not have nested
ranges for definitions you don’t need such symbols.

Chapter 2: Basic Scope Rules 5

2 Basic Scope Rules

The consistent renaming task associates to each identifier occurrence a key that uniquely
identifies the object named by the identifier. The following modules solve the basic problems
of that task.

AlgScope Algol-like scope rules

CScope C-like scope rules

BuScope C-like scope rules analyzed while processing input

Each of the three modules implements consistent renaming of identifiers. Identifier
occurrences are bound to object keys of type DefTableKey.

The AlgScope module applies Algol-like scope rules. They are characterized by the
following description:

A binding is valid within the whole smallest range containing the definition, except in
inner ranges where a binding for the same identifier holds. That means a definition of an
a in an inner range hides definitions of a in outer ranges. An identifier may be used before
its definition.

Usually, the scope rules of a real language are further elaborated. We call them Algol-
like, if the above description is their underlying principle. For example Pascal’s scope rules
are Algol-like. They additionally require that an identifier is not used before its definition.
That restriction can be checked using an instance of the SetFirst module (see Section “Set
a Property at the First Object Occurrence” in Association of properties to definition).

The CScope module applies C-like scope rules. They are characterized by the following
description:

A binding is valid from the definition up to the end of the smallest range containing the
definition, except in inner ranges from a definition of the same identifier to the end of that
range. That means definitions of a in outer range are hidden by a definition of an a in an
inner range from the point of the definition up to the end of the range. It implies that an
identifier is not used before its definition.

Usually, the scope rules of a real language are further elaborated. We call them C-like,
if the above description is their underlying principle. For example the scope rules of the
language C are defined for variable names C-like. But for labels names of jumps they are
defined Algol-like.

The BuScope module applies C-like scope rules. Its computations can be executed while
the input is read (i.e. while the tree is constructed bottom-up). An application may need
this technique if results of the name analysis task influence further reading of input, or
results are to be presented to the user while typing the input.

Both Algol-like and C-like scope rules are described by six basic concepts. The modules
provide .lido specifications with symbol computations for each concept:

IdDefScope is a symbol representing a defining identifier occurrence that is bound in
the scope of the smallest enclosing range.

IdUseEnv is a symbol representing an applied identifier occurrence that is bound in the
enclosing environment.

6 Name analysis according to scope rules

IdUseScope is a symbol representing an applied identifier occurrence that is bound in
the scope of the smallest enclosing range.

ChkIdUse is a role that may be inherited by an applied identifier occurrence. If no
definition is bound to that identifier, then the attribute ChkIdUse.SymErr has the value 1
and a message is issued by the computation:

SYNT.SymMsg=

IF(THIS.SymErr,

message (ERROR, CatStrInd ("Identifier is not defined: ", THIS.Sym),

0, COORDREF));

RootScope is the root symbol containing all identifier occurrences and all RangeScope.
It is automatically inherited by the root of the grammar.

RangeScope is a symbol representing a range for the binding of defining identifier occur-
rences IdDefScope. It may be nested in RootScope or other ranges.

These computational roles are associated to symbols of the user’s grammar to solve the
basic consistent renaming task. Make sure that your tree grammar is constructed according
to the advices given in Chapter 1 [Preconditions], page 3. More details about symbol
computations and attributes provided by the three modules are given in the description of
each module.

Complete executable specifications of our running example for each of the three scope
rule variants are available in

$/Name/Examples/AlgLike.fw

$/Name/Examples/CLike.fw

$/Name/Examples/BuCLike.fw

In our running example the roles are used as follows:

SYMBOL Program INHERITS RootScope END;

SYMBOL Block INHERITS RangeScope END;

SYMBOL DefIdent INHERITS IdDefScope END;

SYMBOL UseIdent INHERITS IdUseEnv END;

SYMBOL TypeUseIdent INHERITS IdUseEnv END;

Depending on which of the three modules is instantiated Algol-like or C-like name analysis
is performed for this example.

The main result of the task is the computation of the attributes IdDefScope.Key,
IdUseEnv.Key, i.e. DefIdent.Key, UseIdent.Key, and TypeUseIdent.Key in our example.
They identify the object each identifier is bound to. It may be used in further computations
to associate properties to it.

If no binding is found for an applied identifier occurrence the Key attribute has the value
NoKey. If that is a violation of language rules an error message can be issued using the role
ChkIdUse:

SYMBOL UseIdent INHERITS ChkIdUse END;

Along with each Key attribute there is an attribute Bind of type Binding, e.g.
UseIdent.Bind. Its value characterizes a binding of an identifier idn in the innermost
scope of an environment env to a key k. The three values idn, env, and k can be obtained
from a Binding using functions defined in Chapter 8 [Environment Module], page 37. If

Chapter 2: Basic Scope Rules 7

no binding is found for an applied identifier occurrence the Bind attribute has the value
NoBinding.

Although both Algol-like and C-like scope rules are defined for nested ranges, the modules
may be used for languages that do not have nested ranges, i.e. there is only one single flat
range in which definitions are valid. In such a case RootScope is used for that range, and
RangeScope is not used.

Another variant of these scope rules arises if a language does not distinguish between
defining and applied identifier occurrences: identifiers are defined implicitly by their occur-
rences. In that case IdDefScope is used for that kind of occurrences, and IdUseEnv is not
used. Of course, this concept does not make sense in languages that have ranges: One could
not refer to an outer identifier definition from within an inner range.

We extend our running example to show implicit definitions within a flat range. We add
a new kind of variables, say control variables to the language. They are implicitly defined
by their use in special statements or operands, given by the following concrete productions:

Statement: ’set’ Ident ’to’ Expression ’;’.

Operand: ’use’ Ident.

These control variable identifiers are bound in a new name space separate from that of
the other entities. Hence, we use a second instance of one of the modules. That instance is
identified by the generic instance parameter CtrlVar:

$/Name/AlgScope.gnrc +instance=CtrlVar :inst

There is only one kind of occurrences for these variables, CtrlVarUse, which has the
role CtrlVarIdDefScope. The Program symbol has the role CtrlVarRootScope:

RULE: Statement ::= ’set’ CtrlVarUse ’to’ Expression ’;’ END;

RULE: Expression ::= ’use’ CtrlVarUse END;

SYMBOL CtrlVarUse INHERITS CtrlVarIdDefScope, IdentOcc END;

SYMBOL Program INHERITS CtrlVarRootScope END;

2.1 Algol-like Basic Scope Rules

This module implements consistent renaming of identifiers. Identifier occurrences are bound
to object keys of type DefTableKey according to Algol-like scope rules:

A binding is valid within the whole smallest range containing the definition, except in
inner ranges where a binding for the same identifier holds.

Make sure that you have considered the advices given in Chapter 2 [Basic Scope Rules],
page 5.

The module is instantiated by

$/Name/AlgScope.gnrc+instance=NAME +referto=KEY :inst

Both generic parameters can be omitted in most of the usual applications. The instance
parameter is used to distinguish several instances of this module. The scope rules of a
language may require that identifiers are bound in different name spaces that do not affect
each other. Then for each name space an instance of this or of the other basic scope
modules is used. The referto parameter modifies the names of Key attributes and of Bind
attributes. It is only used if there is an identifier occurrence in the language that is bound

8 Name analysis according to scope rules

in more than one name space. These bindings are then described by one pair of Key and
Bind attribute each.

The module provides computational roles for the symbols NAMERootScope,
NAMERangeScope, NAMEAnyScope, NAMEIdDefScope, NAMEIdUseEnv, NAMEIdUseScope, and
NAMEChkIdUse to be used in .lido specifications. The computations of the module use
functions of the library’s environment module.

NAMEIdDefScope is a symbol representing a defining identifier occurrence.

NAMEIdUseEnv is a symbol representing an applied identifier occurrence.

NAMEIdUseScope is a symbol representing an applied identifier occurrence that is bound
in the scope of the smallest enclosing range. The outer environment of this range is not
considered.

NAMEChkIdUse is a role that may be inherited by an applied identifier occurrence. It
issues an error message identifier is not defined: if no definition is bound to that
identifier.

NAMERootScope is the root symbol containing all identifier occurrences and all
NAMERangeScope. It is automatically inherited by the root of the grammar.

NAMERangeScope is a symbol representing a range for the binding of defining identifier
occurrences NAMEIdDefScope. It may be nested in NAMERootScope or in other ranges.

NAMEAnyScope comprises the roles of NAMERootScope and NAMERangeScope. It may be
used in constructs like

INCLUDING NAMEAnyScope.NAMEGotKeys

The main results of using this module are the bindings of identifier occurrences repre-
sented by the attributes NAMEIdDefScope.KEYKey and NAMEIdUseEnv.KEYKey. Along with
each Key attribute there is an attribute KEYBind of type Binding, e.g. UseIdent.Bind. Its
value characterizes a binding of an identifier idn in the innermost scope of an environment
env to a key k. The three values idn, env, and k can be obtained from a Binding using
functions defined in Chapter 8 [Environment Module], page 37. If no binding is found for
an applied identifier occurrence the Bind attribute has the value NoBinding.

Usually both NAMEIdDefScope and NAMEIdUseEnv are used. In specific cases of language
rules any combination of NAMEIdDefScope, NAMEIdUseEnv, NAMEIdUseScope may be used.

The attributes NAMEIdDefScope.Sym, NAMEIdUseEnv.Sym, NAMEIdUseScope.Sym must
represent the identifier encoding.

NAMERootScope.NAMEEnv is a root environment where all environments of this name
space are embedded in. It has the value of a global variable NAMERootEnv that is assigned
in the initialization phase of the processor. It allows to introduce predefinitions by initial-
ization code, which then must include the file NAMEAlgScope.h. (see Chapter 3 [Predefined
Identifiers], page 13)

NAMERangeScope.NAMEEnv is an inherited attribute for the environment of bindings of
this range.

NAMEAnyScope.NAMEGotKeys indicates that all keys defined in this and in all enclosing
ranges are defined in NAMEAnyScope.NAMEEnv. NAMEAnyScope.NAMEGotKeys is a precondi-
tion for finding a binding using IdUseEnv.

NAMEAnyScope.NAMEGotLocKeys indicates that all keys are defined in this range are in
NAMEAnyScope.NAMEEnv.

Chapter 2: Basic Scope Rules 9

2.2 C-like Basic Scope Rules

This module implements consistent renaming of identifiers. Identifier occurrences are bound
to object keys of type DefTableKey according to C-like scope rules:

A binding is valid from the definition up to the end of the smallest range containing the
definition, except in inner ranges from a definition of the same identifier to the end of that
range.

Note: The scope rules of the programming language C are defined C-like in most but
not in all respects: For example the scopes of names of variables and functions are defined
C-like, but those of jump labels are defined Algol-like.

Make sure that you have considered the advices given in Chapter 2 [Basic Scope Rules],
page 5.

The module is instantiated by

$/Name/CScope.gnrc+instance=NAME +referto=KEY :inst

Both generic parameters can be omitted in most of the usual applications. The instance
parameter is used to distinguish several instances of this module. The scope rules of a
language may require that identifiers are bound in different name spaces that do not affect
each other. Then for each name space an instance of this or of the other basic scope modules
is used. The referto parameter modifies the names of Key attributes. It is only used if
there is an identifier occurrence in the language that is bound in more than one name space.
These bindings are then described by one Key attribute each.

The module provides computational roles for the symbols NAMERootScope,
NAMERangeScope, NAMEAnyScope, NAMEIdDefScope, NAMEIdUseEnv, NAMEIdUseScope,
NAMEChkIdUse, NAMEIdDefUse, NAMEDeclaratorWithId, and NAMEIdInDeclarator to be
used in .lido specifications. The computations of the module use functions of the library’s
environment module.

NAMEIdDefScope is a symbol representing a defining identifier occurrence.

NAMEIdUseEnv is a symbol representing an applied identifier occurrence.

NAMEChkIdUse is a role that may be inherited by an applied identifier occurrence. It
issues an error message identifier is not defined: if no definition is bound to that
identifier.

NAMEIdUseScope is a symbol representing an applied identifier occurrence that is bound
in the scope of the smallest enclosing range. The outer environment of this range is not
considered.

NAMEIdDefUse represents a defining identifier occurrence like NAMEIdDefScope if
INH.NAMEDefCond is non-zero, otherwise an applied occurrence like NAMEIdUseEnv.
NAMEDefCond is to be computed by an upper computation. There is a default computation
provided that sets INH.NAMEDefCond to 1 iff the identifier is not yet bound in the current
environment.

The pair of roles NAMEDeclaratorWithId and NAMEIdInDeclarator are used to model
the scope concept of declarators as defined in the programming language C: A defining
occurrence of an identifier may be part of Declarator, that is a larger construct which
determines the type of the defined identifier, for example the definition of the array a in

10 Name analysis according to scope rules

int a[a+1];

Here a[a+1] is the Declarator and the first a is its defining occurrence. The scope rules
of C state that the scope of the defined identifier begins immediately after the end of the
declarator, rather than at the position of the defining occurrence. Hence, the a within the
brackets is not bound to the defined array. This rule is only relevant if declarators may con-
tain applied identifier occurrences. To achieve this effect, the role NAMEDeclaratorWithId

is to be inherited by a symbol which is the root of the declarator construct, and the role
NAMEIdInDeclarator is inherited by the symbol that characterizes defining identifier occur-
rences within declarators. Make sure that the grammar guarantees a 1:1 relation the nodes of
these symbol roles in any declarator tree. The attribute NAMEIdInDeclarator.Sym has to be
provided as usual. The symbol roles compute the Sym attribute for NAMEDeclaratorWithId
and the KEYKey attribute for both symbols.

NAMERootScope is the root symbol containing all identifier occurrences and all
NAMERangeScope. It is automatically inherited by the root of the grammar.

NAMERangeScope is a symbol representing a range for the binding of defining identifier
occurrences NAMEIdDefScope. It may be nested in NAMERootScope or other ranges.

NAMEAnyScope comprises the roles of NAMERootScope and NAMERangeScope. It may be
used in constructs like

INCLUDING NAMEAnyScope.NAMEEnv

The main results of using this module are the bindings of identifier occurrences repre-
sented by the attributes NAMEIdDefScope.KEYKey and NAMEIdUseEnv.KEYKey.

Along with each Key attribute there is an attribute Bind of type Binding, e.g.
UseIdent.Bind. Its value characterizes a binding of an identifier idn in the innermost
scope of an environment env to a key k. The three values idn, env, and k can be obtained
from a Binding using macros defined in Chapter 8 [Environment Module], page 37. If
no binding is found for an applied identifier occurrence the Bind attribute has the value
NoBinding.

Usually both NAMEIdDefScope and NAMEIdUseEnv are used. In specific cases of language
rules any combination of NAMEIdDefScope, NAMEIdUseEnv, NAMEIdUseScope, NAMEIdDefUse
may be used.

The attributes NAMEIdDefScope.Sym, NAMEIdUseEnv.Sym, NAMEIdUseScope.Sym,
NAMEIdDefUse.Sym must represent the identifier encoding.

NAMERootScope.NAMEEnv is a root environment where all environments of this name
space are embedded in.

It has the value of a global variable NAMERootEnv that is assigned in the initialization
phase of the processor. It allows to introduce predefinitions by initialization code, which
then must include the file NAMECScope.h. (see Chapter 3 [Predefined Identifiers], page 13)

NAMERangeScope.NAMEEnv is an inherited attribute for the environment of bindings of
this range.

NAMEAnyScope.NAMEGotKeys indicates that all identifier occurrences from the begin of
the NAMERootScope up to the end of this range are bound to keys in NAMEAnyScope.NAMEEnv.

Chapter 2: Basic Scope Rules 11

2.3 C-like Basic Scope Rules Computed Bottom-Up

This module implements consistent renaming of identifiers. The computations of this mod-
ule are specified such that they are executed while the input program is read. Identifier
occurrences are bound to object keys of type DefTableKey according to C-like scope rules.

Make sure that you have considered the advices given in Chapter 2 [Basic Scope Rules],
page 5.

The module is instantiated by

$/Name/BuScope.gnrc+instance=NAME +referto=KEY :inst

The functionality provided by this modules is almost the same as that of the CScope

module (see Section 2.2 [CScope], page 9). Only the differences are described here.

During the bottom-up computation phase values can not be propagated using inherited
(INH) attributes; and computations that affect a whole subtree, like creation of the scope
for a range, have to be associated to a symbol node that precedes that subtree. For that
purpose this module provides additional computational roles that cooperate with the usual
basic name analysis roles.

Usually it is necessary to introduce additional symbols into the concrete grammar pre-
ceding range subtrees. They derive to nothing, and are used to carry the specific bottom-up
computations.

In our running example we would replace the productions

Source: Block.

Statement: Block.

by the productions

Source: BuBlock Block.

Statement: BuBlock Block.

and add

SYMBOL BuBlock INHERITS CreateNewScope, OpenNewScope END;

to the LIDO specification. All other module roles can be used as described for C-like scope
rules.

Usually each symbol representing a NAMERangeScope has to be preceded by a symbol
that inherits both roles NAMECreateNewScope and NAMEOpenNewScope.

If scopes are used as properties of objects it may be necessary to inherit the roles
NAMECreateNewScope, NAMERecentNewScope, and NAMEOpenNewScope to different symbols
which precede a symbol representing a NAMERangeScope. (see Section 5.3 [BuScopeProp],
page 25, see Section 6.3 [BuInh], page 32)

NAMECreateNewScope creates a new scope that is embedded in the scope of the smallest
enclosing range. That scope can be obtained from the attribute SYNT.NAMENewScope, or be
accessed by a subsequent role NAMERecentNewScope (see below).

NAMEOpenNewScope makes the scope obtained from SYNT.NAMENewScope become the cur-
rent scope. The attribute SYNT.NAMEOpenPrecond can be used to specify a precondition
for this operation. If NAMEOpenNewScope is inherited by a symbol representing an identi-
fier occurrence SYNT.NAMEOpenPrecond = THIS.KEYKey ensures that the identifier is bound
before the new scope is opened.

12 Name analysis according to scope rules

NAMERecentNewScope accesses the most recently created new scope and provides it by
the attribute SYNT.NAMENewScope. This role is used together with NAMEOpenNewScope if
NAMECreateNewScope is inherited by a preceding symbol.

We demonstrate the use of these roles for our running example. The grammar introduced
in See Section “Running Example” in Introduction of specification modules, has to be
modified in order to allow bottom-up computation. A new symbol BuBlock is introduced.
It derives to nothing and precedes the symbol Block on right-hand sides of productions:

Source: BuBlock Block.

Statement: BuBlock Block.

The roles CreateNewScope and OpenNewScope introduce the scope for the subsequent
Block:

SYMBOL Program INHERITS RootScope END;

SYMBOL Block INHERITS RangeScope END;

SYMBOL BuBlock INHERITS CreateNewScope, OpenNewScope END;

The other roles for basic scope rules are used as described in See Section 2.2 [CScope],
page 9.

Chapter 3: Predefined Identifiers 13

3 Predefined Identifiers

In most languages some identifiers are predefined, e.g. names for basic types or for constants
like true and false. Their definitions are valid in any program as if they were bound in
the outermost environment. The two modules PreDefine and PreDefId described here
allow to easily introduce such predefinitions. They require that one of the basic scope rule
modules (see Chapter 2 [Basic Scope Rules], page 5) is used.

Both modules PreDefine and PreDefId are to be instantiated to introduce a set of
predefined entities in a name space.

The implementation of the modules use two functions which introduce a source identifier
into the identifier table and establish a binding for it in some environment. These functions
can be used directly for example in cases where predefinitions are to be established for other
environments than the outermost one. Those functions are described below.

The PreDefine module is instantiated by

$/Name/PreDefine.gnrc +instance=NAME +referto=IDENT :inst

The optional instance parameter characterizes the name space in which identifiers are to
be predefined. The instance parameter has to be the same as that of the basic scope rule
module instance used for that name space. Several instances of this module may address
different name spaces.

The referto parameter specifies the symbol name used for identifier terminals in the
grammar. The referto parameter must not be omitted.

If a grammar has several identifier terminal symbols predefinitions can be made using
several instances of this module, if they belong to different name spaces.

The module provides two functions NAMEPreDefine and NAMEPreDefineSym which are
called by the instance of the PreDefId module. NAMEPreDefineSym inserts a string into the
identifier module to be used as an IDENT symbol. NAMEPreDefine additionally binds that
symbol to a key in the root environment given by the global variable NAMERootEnv.

The predefined identifiers are to be described in a file as explained below. The name of
that file has to be given as referto parameter of the instantiation of the PreDefId module:

$/Name/PreDefId.gnrc +instance=NAME +referto=(FILENAME) :inst

The instance parameter has to be the same as that of the PreDefine instance. If this in-
stantiation is contained in a .specs file and if the description file, say Predef.d is contained
in the same directory, it may read

$/Name/PreDefId.gnrc +referto=(Predef.d) :inst

This can also be used if the .specs file and Predef.d are contained in a .fw specification.

The description file contains a sequence of macro calls, one for each predefined identifier,
e.g.

PreDefKey ("int", intKey)

PreDefKey ("real", realKey)

PreDefSym ("external", externSym)

PreDefSymKey ("fail", failSym, failKey)

PreDefSymKeyBind ("write", writeSym, writeKey, writeBind)

The sequence should not contain anything else, because it is expanded in several contexts
where different definitions of those macros are valid.

14 Name analysis according to scope rules

Each call of one of the macros establishes a predefinition for one identifier, and makes
the result accessible via the supplied variable names. Usually not all of those variables are
needed. Hence, the available macros differ in the combinations of those variables. We first
explain the most general macro. The meanings of the other macros are deduced from it.

PreDefSymKeyBind ("xxx", sym, key, bind) encodes the character string xxx as an
identifier, stores it in the identifier table, and stores the encoding in the int variable sym.

Note: The string need not obey the rules specified for the notation of IDENT symbols.
That facility can be used if artifacts are predefined, which can not be referred to by a name
in a program.

key is introduced as a PDL known key.

key is bound to sym in the environment NAMERootEnv. That binding is assigned to the
Binding variable bind. The key, the identifier code, and the environment can be accessed
from the Binding value (KeyOf, IdnOf, EnvOf).

The variables sym and bind and the known key key are defined, exported, and made
accessible via a .HEAD.phi specification. The binding is established and the assignments
are made in the initialization phase of the processor. Hence, the results can be used only
after that phase, i.e. during all computations in the tree.

According to the above description the following macro call

PreDefSymKeyBind ("write", writeSym, writeKey, writeBind)

creates the following variables to be defined and initialized as described:

int writeSym;

DefTableKey writeKey;

Binding writeBind;

The other macros that are provided cause a subset of the effects described for
PreDefSymKeyBind:

PreDefSymKey ("xxx", sym, key) As described above, except: The binding is estab-
lished but not assigned to a variable.

PreDefKeyBind ("xxx", key, bind) As described above, except: The symbol is en-
coded and stored in the identifier table, but the encoding is not assigned to a variable.

PreDefKey ("xxx", key) As described above, except: Neither the symbol encoding nor
the binding are stored in a variable.

PreDefBind ("xxx", bind) As described above, except: The symbol encoding is not
stored in a variable. The key is created dynamically rather than as a known key. Both,
symbol encoding and the key can be accessed via the stored Binding value.

PreDefSym ("xxx", sym) encodes the character string xxx as an identifier, stores it in the
identifier table, and stores the encoding in the int variable sym. No binding is established.

The thus introduced variables and known keys may be used in .lido specifications; the
known keys may be additionally used in any specification where PDL defined entities are
available.

The described modules are based on a C module which provides the following two func-
tions. They may be used directly to establish bindings in other environments than the out-
ermost one, for example. In that case it is sufficient to use the module PreDefMod.specs.

Chapter 3: Predefined Identifiers 15

Then the modules PreDefine and PreDefId need not be instantiated, if the macros ex-
plained above are not used.

The two functions are:

void PreDefineSym (char *name, int code, int *sym)

The string name is encoded with the given syntax code. That is usually the
code of the symbol used for identifier terminals in the grammar (cf. the referto
parameter in the instantiation of the module PreDefine explained above). *sym
is set to the symbol index.

void PreDefine (char *name, int code, int *sym, Environment env, DefTableKey

key,Binding *bind)

The string name is encoded with the given syntax code which is bound to key

in the given environment env. *sym is set to the symbol index. *bind is set to
the created binding, if successful, otherwise to NoBinding.

In our running example we introduce predefined names for some basic types and for
Boolean constants by the module instantiations

$/Name/PreDefine.gnrc +referto=Ident :inst

$/Name/PreDefId.gnrc +referto=(Predef.d):inst

The file Predef.d contains

PreDefKey ("int", intKey)

PreDefKey ("real", realKey)

PreDefKey ("bool", boolKey)

PreDefKey ("true", trueKey)

PreDefKey ("false", falseKey)

Then key names like intKey can be used e.g. in computations for type checking (see Section
“Type Analysis” in Type analysis tasks). In that case it is necessary to state that true and
false are of type bool in a .pdl specification:

trueKey -> TypeOf = {boolType};

falseKey -> TypeOf = {boolType};

It associates the TypeOf property to the predefined objects.

Chapter 4: Joined Ranges 17

4 Joined Ranges

In some situations it is not possible to specify the tree grammar such that each range in
the sense of scope rules is rooted by one single grammar symbol as required for using the
role RangeScope of the basic scope module. The following three modules extend the basic
scope rule modules (see Chapter 2 [Basic Scope Rules], page 5) by facilities that support
such cases:

AlgRangeSeq

Joined Ranges Algol-like

CRangeSeq

Joined Ranges C-like

BuRangeSeq

Joined Ranges C-like Bottom-up

Using one of these modules requires that the corresponding basic scope rule module is
instantiated with the same generic parameters +instance=NAME and +referto=KEY.

This module implements the following concept: Several ranges in the program form one
single range in the sense of scope rules, i.e. the definition in these ranges contribute to a
single scope in which the applied identifier occurrences of these ranges are bound. There
is a symbol which is the subtree root for all these ranges. But it is not a range in the
sense of scope rules because it may also contain identifier occurrences that are bound in the
enclosing range.

The modules provide .lido specifications for the following computational roles:

NAMERangeSequence is to be inherited by a symbol that is the root of a subtree which
contains all to be joined ranges. It provides all attributes provided by NAMERangeScope,
but it is not a range in the sense of scope rules. Other range roles may not be inherited by
NAMERangeSequence.

NAMERangeElement is the role to be inherited by symbols that represent ranges to be
joined. It is a specialized NAMERangeScope. Other range roles may not be inherited by such a
symbol. It is a specialized NAMERangeScope that must be contained in a NAMERangeSequence
subtree without having a NAMERangeScope in between.

We demonstrate the use of these facilities by extending the language of our running
example by introducing an artificial language construct: It consists of a defining identifier
occurrence, that is to be bound in the enclosing range, and two compound statements which
form one single range in the sense of scope rules:

Statement: Join.

Join: ’join’ DefIdent JoinedBlock JoinedBlock

’joined’ ’;’.

JoinedBlock: Compound.

Hence the Join symbol has the role RangeSequence, and the JoinedBlock symbol has
the role RangeElement:

RULE: Join ::= ’join’ DefIdent JoinedBlock JoinedBlock

’joined’ ’;’

END;

18 Name analysis according to scope rules

SYMBOL Join INHERITS RangeSequence END;

SYMBOL JoinedBlock INHERITS RangeElement END;

This example is applicable with either the AlgRangeSeq module or the CRangeSeq. In
case of Algol-like scope rules an applied identifier occurrence in either of the two ranges
may be bound to a definition in either of the two ranges. In case of C-like scope rules an
applied identifier occurrence in the second of the two ranges may be bound to a definition
in either of the two ranges.

In case of bottom-up computations using the BuRangeSeq module some modifications
have to be applied as described for that module.

4.1 Joined Ranges Algol-like

This module implements joined ranges for Algol-like scope rules as described in (see
Chapter 4 [Joined Ranges], page 17).

The module is instantiated by

$/Name/AlgRangeSeq.gnrc+instance=NAME +referto=KEY :inst

Using this module requires that the module AlgScope is instantiated with the same
values of the generic parameters.

The module provides the computational roles NAMERangeSequence and
NAMERangeElement as described in See Chapter 4 [Joined Ranges], page 17.

4.2 Joined Ranges C-like

This module implements joined ranges for C-like scope rules as described in (see Chapter 4
[Joined Ranges], page 17).

The module is instantiated by

$/Name/CRangeSeq.gnrc+instance=NAME +referto=KEY :inst

Using this module requires that the module CScope is instantiated with the same values
of the generic parameters.

The module provides the computational roles NAMERangeSequence and
NAMERangeElement as described in See Chapter 4 [Joined Ranges], page 17.

4.3 Joined Ranges C-like Bottom-up

This module implements joined ranges for C-like scope rules as described in (see Chapter 4
[Joined Ranges], page 17). Its computations are executed BOTTOMUP while the input is read.

The module is instantiated by

$/Name/BuRangeSeq.gnrc+instance=NAME +referto=KEY :inst

Using this module requires that the module BuScope is instantiated with the same values
of the generic parameters.

The module provides the computational roles NAMERangeSequence, NAMEOpenSeqScope
and NAMEOpenElemScope.

Chapter 4: Joined Ranges 19

NAMERangeSequence is to be inherited by a symbol that is the root of a subtree which
contains all to be joined ranges. It provides all attributes provided by NAMERangeScope,
but it is not a range in the sense of scope rules. Other range roles may not be inherited by
NAMERangeSequence.

NAMEOpenSeqScope is to be inherited by a symbol that is in the subtree of
NAMERangeSequence and precedes all to be joined ranges.

NAMEOpenElemScope is to be inherited by a symbol that precedes each to be joined range.

A nested NAMERangeSequence may not occur between NAMEOpenSeqScope and the first
NAMEOpenElemScope.

The example given in See Chapter 4 [Joined Ranges], page 17 is here modified for the
bottom-up case.

We demonstrate the use of these facilities by extending the language of our running
example by introducing an artificial language construct: It consists of a defining identifier
occurrence, that is to be bound in the enclosing range, and two compound statements which
form one single range in the sense of scope rules.

We introduce two new symbols BuJoin and BuJoinEl that derive to empty.

Statement: Join.

Join: ’join’ BuJoin DefIdent

BuJoinEl Block BuJoinEl Block

’joined’ ’;’.

BuJoin: .

BuJoinEl: .

The module roles are inherited as described above:

RULE: Join ::= ’join’ BuJoin DefIdent

BuJoinEl Block BuJoinEl Block

’joined’ ’;’

END;

SYMBOL Join INHERITS RangeSequence END;

SYMBOL BuJoin INHERITS OpenSeqScope END;

SYMBOL BuJoinEl INHERITS OpenElemScope END;

SYMBOL Block INHERITS RangeScope END;

Chapter 5: Scopes Being Properties of Objects 21

5 Scopes Being Properties of Objects

Language constructs like modules, classes, or record types have a body that is a range.
The set of bindings for the components defined in that range constitutes its scope. In an
applied context of a module, class, or record identifier its components may be selected, e.g.
in m.k, where m is a module identifier and k is one of its components. These constructs are
also called qualified names in some language descriptions. In order to bind such applied
occurrences of component identifiers in contexts outside their defining range, the scope of
the range is associated as a property to the key of the module, class, or record identifier.

This specific task of consistent renaming for component identifiers is often closely related
to type analysis. If v in v.k is a variable that has a record type, then that type key has the
scope of the record range associated as a property (see Section “Type Analysis” in Type
analysis tasks).

The following four modules extend the basic scope rule modules (see Chapter 2 [Basic
Scope Rules], page 5) by facilities that support scope properties. How to select one of the
modules is explained below.

ScopeProp

Scope Properties without left-to-right Restrictions (recommended)

CScopeProp

Scope Properties C-like (recommended only with CInh)

BuScopeProp

Scope Properties C-like analyzed while processing input

The design of scope rules and their description needs careful consideration if the concept
of scopes being properties is involved. We have to answer some questions on the described
language before we can decide which of the library modules is to be used:

It is easily decided that we need the facility of scope properties: Assume the language
has named program objects, say modules, which consist of a range with definitions of com-
ponents or members. Those members are accessible outside their defining range wherever
the name of the module is accessible:

module m

{ int i;

float f (); {...}

}

m:f();

In this example the module body is a range where the members i and f are defined. The
scope of the range contains bindings for i and f. It is a property of the module m which is
set in the module definition. The construct m:f is a qualified name: A binding for f is to
be found in the scope property of the qualifying module name m. The definitions valid in
the context of the qualified name are irrelevant for the binding of f.

The same application pattern occurs for example with types that have components, like
record types, structure types, and union types. There a component selection is usually
qualified with an expression having such a type rather than with the type identifier itself.

It is recommended to use the ScopeProp module for the specification of such scope
patterns. It fits to any of the basic scope rule modules, Alg-like, C-like, or bottom-up. It

22 Name analysis according to scope rules

does not impose any ordering restriction that would require the definition of a member to
occur before its qualified use. For example in a language with C-like basic scope rules the
following sequence would be acceptable:

module m;

m:f();

module m

{ int i;

float f (); {...}

}

Even if it should be considered erroneous to use the qualified name f before its definition,
it is recommended to specify the binding in the described way, and to enforce that restriction
by a check of the related positions. The same holds for bottom-up basic scope rules. One
only has to be aware that the binding of qualified names is determined after the bottom-up
computations.

There are a few specific reasons where the modules CScopeProp or BuScopeProp, the
C-like variants of ScopeProp are to be used instead:

If the basic scope rules are specified C-like using BuScope and the binding of qualified
names has to be done by bottom-up computations, then BuScopeProp is to be used.

If the basic scope rules are specified C-like using CScope and the CInh module is used
to implement the concept of inheritance, then CScopeProp is to be used. That is always
necessary when bindings of scope properties are needed to solve the binding of non-qualified
names in ranges where C-like scope rules apply. As a consequence it is enforced that the
definitions of such members precede their uses.

The general description of this set of module is given in the section see Section 5.1 [Scope-
Prop], page 22, the deviations of its variants are described in see Section 5.2 [CScopeProp],
page 24, and see Section 5.3 [BuScopeProp], page 25.

5.1 Scope Properties without left-to-right Restrictions

This module ScopeProp implements consistent renaming of identifiers using scopes which
are properties associated to object keys. The module computations ensure that scope
properties are associated and bindings are made before they are accessed. This strategy fits
to Algol-like scope rules, and to C-like scope rules if qualified names may be used before
their definition.

The module is instantiated by

$/Name/ScopeProp.gnrc+instance=NAME +referto=KEY :inst

It is required that a basic scope rule module is instantiated with the same generic pa-
rameters +instance=NAME and +referto=KEY.

Each of the modules introduces a PDL property named NAMEScope where NAME is the
value of the instance parameter.

The module provide .lido specifications for the computational roles NAMEExportRange,
NAMEQualIdUse, and NAMEChkQualIdUse:

NAMEExportRange is a NAMERangeScope the scope of which is associated as a value of
the NAMEScope property to the value of the attribute KEYScopeKey. All local definitions are

Chapter 5: Scopes Being Properties of Objects 23

bound in this scope. The scope may be used to bind qualified names (NAMEQualIdUse), or
to provide the source for inheritance. Such uses may occur outside as well as inside of that
NAMEExportRange. A user computation is required to set the attribute THIS.KEYScopeKey.
The scope will be set as a value of its property NAMEScope. This role is typically inherited
by a grammar symbol that represents the body of a module, of a class, or of a record type.
The KEYScopeKey attribute is then set to the key representing the module, class, or record
type.

NAMEQualIdUse is inherited by an applied occurrence of a qualified identifier. Its
binding is looked up in a scope that is obtained as a NAMEScope property from the
attribute THIS.NAMEScopeKey. A computation of INH.NAMEScopeKey has to be provided.
The obtained scope is available in the attribute THIS.NAMEScope, e.g. to support
a check whether the qualification is correct. Alternatively, a user computation may
compute THIS.NAMEScope instead of THIS.NAMEScopeKey. This role is typically inherited
by a grammar symbol that represents a qualified identifier occurrence like sleep in
Thread.sleep or push in st.push. The binding may be looked up in a scope associated
to Thread or to the type of st, for example.

NAMEChkQualIdUse can be inherited together with NAMEQualIdUse. It causes a message
to be given, if no binding is found for the identifier.

Computations of these modules also establish attributes NAMEGotVisibleScopePropNest,
NAMEGotVisibleKeys, and NAMEGotVisibleKeysNest of including NAMERangeScopes and
NAMERootScope. They are used in modules computations which access the NAMEScope

property or which look up bindings in those scopes. In general these attributes need not
be considered in in user computations.

We demonstrate the use of these facilities by extending the language of our running
example by module declarations and access of module components. (For a complete example
see the Tutorial on Name Analysis.) The notation is specified by the following two concrete
productions:

Declaration: ’module’ DefIdent ModBlock ’;’.

ModBlock: Compound.

Operand: ModUseIdent ’::’ QualIdent.

ModUseIdent: Ident.

QualIdent: Ident.

The symbols inherit the roles provided by the scope property module as described above:

SYMBOL ModBlock INHERITS ExportRange END;

RULE: Declaration ::= ’module’ DefIdent ModBlock ’;’ COMPUTE

ModBlock.ScopeKey = DefIdent.Key;

END;

In the context of the module declaration it is specified that the scope of the module
body is to be associated to the key of the module identifier.

In the context of a selection the scope is specified in which the selected component is
to be bound. It is accessed from the key of the module identifier. Module computations
establish dependences such that all scope properties are associated before they are accessed
here:

24 Name analysis according to scope rules

SYMBOL ModUseIdent INHERITS

IdUseEnv, ChkIdUse, IdentOcc

END;

SYMBOL QualIdent INHERITS

QualIdUse, ChkQualIdUse, IdentOcc

END;

RULE: Expression ::= ModUseIdent ’::’ QualIdent COMPUTE

QualIdent.ScopeKey = ModUseIdent.Key;

END;

In order to make sure that the it is really a module identifier to which the selection is
applied we specify the following check

RULE: Expression ::= ModUseIdent ’::’ QualIdent COMPUTE

IF (AND (NE (QualIdent.ScopeKey, NoKey),

EQ (QualIdent.Scope, NoEnv)),

message (FATAL, CatStrInd ("module identifier required: ",

ModUseIdent.Sym),

0, COORDREF));

END;

The message is only issued if the identifier is defined but does not have a scope property.

(The Strings module is used to compose the message text (see Section “String Con-
catenation” in Solutions of common problems).)

5.2 Scope Properties C-like

This module implements consistent renaming of identifiers using scopes which are properties
associated to object keys. The module computations establish bindings, lookup names,
associate scope properties, and lookup qualified names in left-to-right depth-first order. It
imposes the strong requirement that a qualified name, for example the f in m.f, may not
precede its definition.

It is recommended to use this module only if it is needed as a companion of the module
CInh. Otherwise ScopeProp should be used (see Chapter 5 [Scope Properties], page 21).

The module is instantiated by

$/Name/CScopeProp.gnrc+instance=NAME +referto=KEY :inst

Using this module requires that the module CScope is instantiated with the same values
of the generic parameters.

The module provides a PDL property named NAMEScope and the computational roles
NAMEExportRange, NAMEQualIdUse, and NAMEChkQualIdUse as described in see Section 5.1
[ScopeProp], page 22.

All computations of this module follow strictly C-like scope rules, i.e. binding of identifier
occurrences, association of scope properties, and access of scope properties are done in left-
to-right depth-first order.

Calls of GetNAMEScope in a user computation do not need a specific precondition if they
depend on a key attribute of a context which is to the right of the context where the property
is set. That is usually true for situations where the module role NAMEQualIdUse is used.

Chapter 5: Scopes Being Properties of Objects 25

Only if a particular computation is to depend on the fact that all scope properties of the
program are associated, it may depend on INCLUDING NAMERootScope.NAMEGotScopeProp.

5.3 Scope Properties C-like Bottom-Up

This module implements consistent renaming of identifiers using scopes which are properties
associated to object keys. The module computations ensure that scope properties are
associated and accessed in left-to-right depth-first order. It imposes the strong requirement
that a qualified name, for example the f in m.f, may not precede its definition.

It is recommended to use this module only if qualified identifiers have to be bound in
the bottom-up phase, or if the module is needed as a companion of the module BuInh.
Otherwise ScopeProp should be used (see Chapter 5 [Scope Properties], page 21).

The computations provided by this module are executed while reading the input.

The module is instantiated by

$/Name/BuScopeProp.gnrc+instance=NAME +referto=KEY :inst

Using this module requires that the module BuScope is instantiated with the same values
of the generic parameters.

The module provides a PDL property named NAMEScope and the computational roles
NAMEIdSetScopeProp, NAMEIdGetScopeProp, and NAMEQualIdUse. A role
NAMERangeScopeProp is NOT provided; NAMERangeScope has to be used instead.

Note: The role names of the module ScopeProp as NAMEExportRange, QualIdUse and
ChkQualIdUse do not apply here.

All computations of this module follow strictly C-like scope rules, i.e. binding of identifier
occurrences, association of scope properties, and access of scope properties are done in left-
to-right depth-first order.

As a consequence of bottom-up computation the value of a key can not be propagated
by an upper computation to the range symbol. Hence, if the defining identifier occurrence
precedes the range, the scope has to be created by the role NAMECreateNewScope (see
Section 2.3 [BuScope], page 11) and associated to the key in the identifier context using the
role NAMEIdSetScopeProp.

The role that opens the range scope (NAMEOpenNewScope, see Section 2.3 [BuScope],
page 11) may also be associated to that identifier context, avoiding an additional symbol
that derives to empty.

The range symbol has the role NAMERangeScope.

The module declaration of our example then reads:

RULE: Declaration ::= ’module’ ModDefIdent Block ’;’ END;

SYMBOL ModDefIdent INHERITS

CreateNewScope, OpenNewScope, IdSetScopeProp,

IdDefScope, IdentOcc

COMPUTE

SYNT.OpenPrecond = SYNT.Key;

END;

26 Name analysis according to scope rules

NAMEOpenPrecond is specified to depend on the key attribute to ensure that the identifier
is bound in the enclosing environment before the environment of the module range is opened.

In component selections the scope property needs to be propagated from the context
that provides it to the selector context. The module role NAMEGetScopeProp accesses the
scope from the key specified by KEYScopeKey and assigns it to a variable. It is used at the
selector context right of it by the role NAMEQualIdUse.

Hence, in our running example the selection is specified as follows:

RULE: Expression ::= ModUseIdent ’::’ QualIdent END;

SYMBOL ModUseIdent INHERITS

GetScopeProp, IdUseEnv, ChkIdUse, IdentOcc

COMPUTE

SYNT.ScopeKey = THIS.Key;

END;

SYMBOL QualIdent INHERITS

QualIdUse, ChkIdUse, IdentOcc

END;

If we had a typed record expression instead of the module identifier to select from,
ScopeKey would be set to the type key instead of the module key.

Chapter 6: Inheritance of Scopes 27

6 Inheritance of Scopes

The basic scope rule concepts are described by hierarchically nested environments which
reflect the structure of nested ranges in a program. Using scopes as properties of objects,
as described in See Chapter 5 [Scope Properties], page 21, allows to export a scope with
bindings from a range, propagate them by a property, and bind single identifiers that occur
outside of the range where the binding is established, e.g. a component identifier that is
qualified by a module name.

In this section we further extend that concept such that scope rules for language con-
structs like with statements of Pascal, use qualifications of Ada, or inheritance of classes as
in object-oriented languages can be specified. All these constructs allow that non-qualified
identifier occurrences may be bound to definitions contained in surrounding ranges or to
definitions of scopes that are inherited by a surrounding range, for example

module m { int i; float f() {...} }

{ float g;

with m

{ int i; g = f();}

}

The new concept is described by an inheritance relation between scopes that is used when
applied identifier occurrences in a range are bound to definitions. In the above example
the range of the with-statement inherits the scope of the module m and is embedded in the
surrounding range.

Name analysis computations for such constructs rely on several different operations:
scopes being created, bindings in a scope being established, scope properties being set, in-
heritance relations between scopes being established. The propagation of scope properties is
not limited to strictly nested structures. Hence, the dependencies between the computations
are rather sophisticated. That is why the combination of modules is restricted.

There are three modules that provide computations for the consistent renaming task
based on inheritance. They rely on the use of the corresponding modules for basic scope
rules and for scope properties:

AlgInh Inheritance with Algol-like Scope Rules (recommended to be used in general)

CInh Inheritance with C-like Scope Rules

BuInh Inheritance computed while processing input

Using one of these modules requires that the corresponding basic scope rule module
and a suitable scope property module is instantiated with the same generic parameters
+instance=NAME and +referto=KEY.

Each of the three modules implements consistent renaming of identifiers. Identifier occur-
rences are bound to object keys of type DefTableKey according to the following inheritance
rule:

An inheritance relation between scopes is introduced: A scope c1 may inherit the bind-
ings of a scope c2, i.e. a definition of c2 is inherited by c1 unless it is hidden by another
definition of the same identifier in c1. A scope may inherit from several scopes (multiple
inheritance). The inheritance relation is transitive and must be acyclic.

28 Name analysis according to scope rules

Together with the nesting of ranges the following general scope rule is applied:

An applied occurrence of an identifier a is bound to a definition of a which is contained
in or inherited by the smallest enclosing range.

Definitions contained in a range hide definitions inherited (directly or indirectly) by that
range.

Definitions inherited by a range hide definitions of enclosing ranges.

Using multiple inheritance a scope c1 may inherit from a scope c2 and from c3, where
c2 also inherits from c3. If both c2 and c3 define an identifier a, then the definition of a
in c3 is hidden by that of c2. This holds for c1, too, although there is an inheritance path
from c3 to c1 that does not pass c2.

If several definitions of an identifier a are inherited via different unrelated inheritance
paths, the applied occurrence is bound to an arbitrary one of them. This module provides
a means to detect that situation, in order to issue an error message or to access all those
definitions, depending on the requirements of the particular language.

If the computations of this module are used to establish inheritance relations, then the
computations of identifier roles, like NAMEIdUseEnv, NAMEIdUseScope, and NAMEQualIdUse

are modified such that inheritance relations are considered when bindings are looked up.

The modules provide .lido specifications for the following computational roles:

NAMEInhRange is a range that may inherit scopes exported form other ranges, but does
not export its own scope. This role is, for example, applied to with-statements. The role
NAMEInheritScope (see below) is used to establish the inheritance relations. No distinction
is made whether one or more scopes can be inherited. A user computation for the VOID

attribute NAMEInhRange.NAMEGotInh has to be provided in upper or lower computation,
such that it states the condition that all those inheritances are done. Usually the attributes
NAMEInheritScope.NAMEInheritOk are used for that purpose.

NAMEExportInhRange is both an NAMEExportRange and a NAMEInhRange, i.e. it inherits
scopes and exports its own scope. This role is, for example, applied to bodies of class dec-
larations. It is essential to use this role, instead of inheriting both roles, NAMEExportRange
and NAMEInhRange, to one grammar symbol; otherwise the dependences provided by the
two roles could cause conflicts.

NAMEInheritScope is used to establish one inheritance relation between two scopes:
THIS.NAMEInnerScope is stated to inherit from THIS.NAMEOuterScope, both of type
Environment. THIS.NAMEInnerScope has to be set by a user computation, either in upper
or lower context. Another user computation is required to set THIS.NAMEScopeKey in
in upper or lower context. A provided computation obtains the NAMEScope property

from it and sets SYNT.NAMEOuterScope. The inheritance relation is established by a call
of the function NAMEInheritClass provided by the environment module. The attribute
SYNT.NAMEInheritOk is set to 1 iff the inheritance relation is legal, i.e. both scopes exist
and belong to the same environment hierarchy, in the outer scope bindings have not been
looked up before, and this inheritance does not establish a cyclic inheritance relation.

NAMEChkInhinherit can be used to issue error messages at a NAMEInheritScope node.
If the outer scope does not exist, then the attribute NAMEInheritScope.SrcErr has the
value 1 and a message is issued by the computation:

SYNT.SrcMsg=

Chapter 6: Inheritance of Scopes 29

IF(THIS.SrcErr,

message (ERROR, "Source of inheritance is missing", 0, COORDREF));

If the stated inheritance is invalid, then the attribute NAMEInheritScope.ScpErr has
the value 1 and a message is issued by the computation:

SYNT.InhMsg=

IF(THIS.InhErr,

message (ERROR, "Wrong scope inherited", 0, COORDREF));

NAMEChkInhIdUse and NAMEChkInhQuaIdUse are roles to be associated to an
applied identifier occurrence. If several definitions of the identifier are inherited on
different unrelated inheritance paths, then the attribute NAMEChkInhIdUse.MulErr (or
NAMEChkInhQuaIdUse.MulErr) has the value 1 and a message is issued by the computation:

SYNT.MulMsg=

IF(THIS.MulErr,

message (ERROR,

CatStrInd(

"Several definitions are inherited for: ",

IdnOf(THIS.|KEY|Bind)),

0, COORDREF));

NAMEChkInhIdUse may be used together with NAMEIdUseEnv or NAMEIdUseScope;
NAMEChkInhQualIdUse may be used together with NAMEQualIdUse.

We demonstrate the use of inheritance by extending our running example by a with

statement for modules (see Chapter 5 [Scope Properties], page 21).

Statement: ’with’ WithClause ’do’ WithBody.

WithClause: ModUseIdent.

WithBody: Statement.

The identifier should be bound to a module. The WithBody inherits the module’s scope.
I.e. the definitions of the module body are valid in the WithBody. They may be hidden
by definitions in ranges contained in the WithBody. They may hide definitions in ranges
enclosing the with statement. Hence, the WithBody plays the role of a InhRange and its
scope is the target of the inheritance relation. (The WithBody does not export its bindings.)
The module’s scope property is its source:

SYMBOL WithBody INHERITS InhRange END;

SYMBOL WithClause INHERITS InheritScope, ChkInherit END;

RULE: Statement ::= ’with’ WithClause ’do’ WithBody COMPUTE

WithClause.InnerScope = WithBody.Env;

WithBody.GotInh = WithClause.InheritOk;

END;

RULE: WithClause ::= ModUseIdent COMPUTE

WithClause.ScopeKey = ModUseIdent.Key;

END;

Note: In this example the WithClause can only be a simple identifier, ModUseIdent. If
a typed expression would be allowed there instead, as in Pascal, the scope property would
be associated to and obtained from type keys.

30 Name analysis according to scope rules

Similarly we can extend the language of our running example by classes with multiple
inheritance:

Declaration: ’class’ DefIdent Inheritances ClassBlock ’;’.

ClassBlock: Compound.

Inheritances: Inheritance*.

Inheritance: ’:’ InheritIdent.

InheritIdent: Ident.

A declaration of a class exports the bindings of the class body, like the declaration of
a module (see Chapter 5 [Scope Properties], page 21). Additionally other classes may be
inherited by a class, i.e. their definitions are valid within the class body, if not hidden by
inner definitions. The inherited definitions may hide definitions in ranges the class declara-
tion is contained in. Hence, the scope of the class body is the target of all Inheritances,
their sources are given by the scope property associated to the classes identified in the
Inheritances.

SYMBOL ClassBlock INHERITS ExportRange, InhRange END;

RULE: Declaration ::= ’class’ DefIdent Inheritances ClassBlock ’;’

COMPUTE

ClassBlock.ScopeKey = DefIdent.Key;

ClassBlock.GotInh =

Inheritances CONSTITUENTS InheritIdent.InheritOk;

Inheritances.InnerScope = ClassBlock.Env;

END;

SYMBOL Inheritances: InnerScope: Environment;

SYMBOL InheritIdent INHERITS

InheritScope, ChkInherit, IdUseEnv, ChkIdUse, IdentOcc

COMPUTE

SYNT.InnerScope = INCLUDING Inheritances.InnerScope;

SYNT.Scopekey = THIS.KeyK;

END;

Note: In this example the inherited classes are determined by an unqualified identifier
each, InheritIdent. In case of Algol-like scope rules that can not be extended to qualified
identifiers, because of the dependence pattern used by the AlgInh module. It would cause
cyclic attribute dependences, in general.

Languages (like C++) allow that different definitions of an identifier may be inher-
ited on different inheritance paths to a range. But in that case such an identifier may
not be applied in that range. This restriction is checked by the roles ChkInhIdUse and
ChkInhIdUseScopeProp. They have to be associated to applied identifier symbols which
are bound in the enclosing environment or in the scope obtained from a property, respec-
tively:

SYMBOL UseIdent INHERITS ChkInhIdUse END;

SYMBOL QualIdent INHERITS ChkInhIdUseScopeProp END;

Chapter 6: Inheritance of Scopes 31

The error messages can be changed globally by symbol computations overriding the
computations of the ...Msg attributes:

SYMBOL UseIdent COMPUTE

SYNT.MulMsg=IF(THIS.MulErr,message (ERROR,

CatStrInd("Ambiguous symbol: ", IdnOf(THIS.|KEY|Bind)),

0, COORDREF));

END;

The above specification also fits to the specification for identifiers that are qualified by
a module name given in (see Chapter 5 [Scope Properties], page 21). If in a construct c::x
c is a class, then x is bound to a component defined in c or in a class inherited by c. This
is the concept of the scope operator in C++.

These examples are applied in the same way for Algol-like and for C-like scope rules.
The differences for bottom-up computation are explained in the description of the BuInh

module.

6.1 Inheritance with Algol-like Scope Rules

This module implements consistent renaming of identifiers according to inheritance rela-
tions. It assumes that the scope rules do not restrict defining and applied occurrences of
identifiers by a certain order in the program text, as the C-like scope rules do. The mod-
ule computation in particular fit to Algol-like scope rules as described in See Chapter 6
[Inheritance of Scopes], page 27.

The module is instantiated by

$/Name/AlgInh.gnrc+instance=NAME +referto=KEY :inst

Using this module requires that the modules AlgScope and ScopeProp are instantiated
with the same values of the generic parameters.

The module provides .lido specifications for the computational roles NAMEInhRange,
NAMEExportInhRange, NAMEInheritScope, NAMEChkInherit, NAMEChkInhIdUse and
NAMEChkInhIdUseScopeProp as described in See Chapter 6 [Inheritance of Scopes],
page 27.

The dependence pattern used in the computations of this module, as described be-
low, imposes a restriction on the use of the role NAMEInheritScope, that determines an
inheritance: In case that the inheritance is established for a NAMEExportInhRange, the cor-
responding NAMEInheritScope may not depend on a qualified name that is bound using
the role NAMEQualIdUse, because the computations then may cause cyclic dependences.

Computations of the module provide attributes NAMEAnyScope.NAMEGotVisibleKeys.
They describe that for all NAMEExportRanges visible from this range its keys have
been bound, the scope property has been set, and its inheritance relation has been
established (if any). Module computations use these attributes as precondition for
the lookup of unqualified names. Computations of the module also provide attributes
NAMEAnyScope.NAMEGotVisibleKeysNest. They specify that the state described above
additionally holds for the visible and their recursively, directly nested NAMEExportRanges.
Module computations use these attributes as precondition for the lookup of qualified
names. Usually these attributes and their dependence patterns need not be considered by
user specifications. Only is cases where unconventional language rules for the export or the

32 Name analysis according to scope rules

inheritance of bindings cause conflicts with these dependence patterns the computations of
these attributes may be considered for being overridden.

6.2 Inheritance with C-like Scope Rules

This module implements consistent renaming of identifiers according to inheritance rela-
tions as described in See Chapter 6 [Inheritance of Scopes], page 27. However, the module
computations establish bindings, lookup names, associate scope properties, establish inher-
itance relations, and lookup qualified names in left-to-right depth-first order. It imposes
the strong requirement that a qualified name, for example the f in m.f, may not precede
its definition.

The module is instantiated by

$/Name/CInh.gnrc+instance=NAME +referto=KEY :inst

Using this module requires that the modules CScope and CScopeProp are instantiated
with the same values of the generic parameters.

The use of this module enforces the requirement that for any kind of identifier occurrence
strictly hold that the definition precedes its uses.

The module provides .lido specifications for the computational roles NAMEInhRange,
NAMEExportInhRange, NAMEInheritScope, NAMEChkInherit, NAMEChkInhIdUse and
NAMEChkInhIdUseScopeProp as described in See Chapter 6 [Inheritance of Scopes],
page 27.

This module uses a strict left-to-right depth-first dependence pattern for all its attribute
computations. The attribute NAMERootScope.NAMEGotInhScopes states that all inheritance
relations are established for the whole tree.

6.3 C-like Inheritance Bottom-Up

This module implements consistent renaming of identifiers according to inheritance relations
based on C-like scope rules. The computations can be executed while input is read.

The module is instantiated by

$/Name/BuInh.gnrc+instance=NAME +referto=KEY :inst

Using this module requires that the modules BuScope and BuScopeProp are instantiated
with the same values of the generic parameters.

The use of this module enforces the requirement that for any kind of identifier occurrence
strictly hold that the definition precedes its uses.

The module provides .lido specifications for the computational roles
NAMEInheritScope, NAMEChkInherit NAMEChkInhIdUse and NAMEChkInhIdUseScopeProp

as described in See Chapter 6 [Inheritance of Scopes], page 27. No additional range
role (as NAMEInhRange or NAMEExportInhRange) is provided by this module. The role
NAMERangeScope of the basic scope rule module is to be used for ranges that are affected
by inheritance, too.

The role NAMEInheritScope differs from the description in See Chapter 6 [Inheritance
of Scopes], page 27:

The target scope for the inheritance relation is assumed to be computed by the role
NAMECreateNewScope in this context or in a preceding context. It is passed via a variable.

Chapter 6: Inheritance of Scopes 33

If NAMECreateNewScope and NAMEInheritScope are used in the same context, a computa-
tion SYNT.NAMEInhPrecond = THIS.NAMENewScope; has to be added, in order to guarantee
proper use of the variable.

A lower computation of SYNT.NAMEOuterScope is required for this context.

The examples given in See Chapter 6 [Inheritance of Scopes], page 27 are modified here
to allow for bottom-up computation using this module.

We demonstrate the use of single inheritance by extending our running example by a
with statement for modules (see Chapter 5 [Scope Properties], page 21).

Statement: ’with’ WithUseIdent ’do’ WithBody.

WithBody: Statement.

The identifier should be bound to a module. The WithBody inherits the module’s scope.
I.e. the definitions of the module body are valid in the WithBody. They may be hidden
by definitions in ranges contained in the WithBody. They may hide definitions in ranges
enclosing the with statement. WithBody plays the role of a RangeScope. In the preceding
WithUseIdent context the scope is created and determined to be target of an inheritance
relation. The scope property of the module key is stated to be the outer scope of the
inheritance relation.

RULE: Statement ::= ’with’ WithUseIdent ’do’ WithBody END;

SYMBOL WithBody INHERITS RangeScope END;

SYMBOL WithUseIdent INHERITS

GetScopeProp, CreateNewScope, InheritScope,

OpenNewScope, IdUseEnv, ChkIdUse, IdentOcc

COMPUTE

SYNT.ScopeKey = SYNT.Key;

SYNT.OuterScope = SYNT.ScopeProp;

SYNT.OpenPrecond = SYNT.Key;

END;

Similarly we can extend the language of our running example by classes with multiple
inheritance:

The scope of the class body is created in the context ClassDefIdent, associated a
property of the class identifier, and used as a target for the inheritance relations established
in all Inheritances. The roles RecentNewScope and OpenNewScope in the newly introduced
context BuClass access and open that scope.

RULE: Declaration ::= ’class’ ClassDefIdent Inheritances

BuClass ClassBlock ’;’

END;

SYMBOL ClassDefIdent INHERITS

CreateNewScope, IdSetScopeProp, IdDefScope, IdentOcc

END;

SYMBOL BuClass INHERITS RecentNewScope, OpenNewScope END;

34 Name analysis according to scope rules

In the InheritIdent contexts the scope property of the identifier is accessed and deter-
mined to be the outer scope to be inherited to the previously created scope.

SYMBOL InheritIdent INHERITS

GetScopeProp, InheritScope,

IdUseEnv, ChkIdUse, IdentOcc

COMPUTE

SYNT.ScopeKey = SYNT.Key;

SYNT.OuterScope = SYNT.ScopeProp;

IF (AND (NOT (THIS.InheritOk), NE (THIS.Key, NoKey)),

message (FATAL, CatStrInd ("cyclic inheritance: ", THIS.Sym),

0, COORDREF))

BOTTOMUP;

END;

The above specification also fits to the specification for identifiers that are qualified by
a module name given in (see Chapter 5 [Scope Properties], page 21). If in a construct c::x
c is a class, then x is bound to a component defined in c or in a class inherited by c. This
is the concept of the scope operator in C++.

Chapter 7: Name Analysis Test 35

7 Name Analysis Test

This module augments the specified processor such that it produces output that makes the
results of name analysis visible. For each identifier occurrence that has one of the identifier
roles of the name analysis modules a line of the form

m in line 23 bound in line 4 of scope in line 3

is written to the standard output file. The first line number is that of the identifier occur-
rence, the second states where its binding was established by a defining occurrence, and the
third where the scope of the binding has been created, i.e. usually the begin of the range.
For unbound identifier occurrences a line of the form

m unbound in line 35

is written. The output is produced in left to right order of the identifier occurrence, inde-
pendent of the order in which the bindings are found. The computations for producing that
output are scheduled after the bindings are computed at all identifier occurrences, in order
to avoid problems of evaluation order scheduling.

The output of the processors specified in $/Name/Examples is produced by using this
module.

To achieve the effect of this module it is simply instantiated. No inheritance of any roles
is necessary.

The module is instantiated by

$/Name/ShowBinding.gnrc+instance=NAME :inst

The instance parameter must have the same value as that of the instantiation of the basic
name analysis module, i.e. AlgScope, CScope, or BuScope. Several instances may be used
for testing the bindings in different name spaces. Unfortunately, this module is NOT usable
if the name analysis module is instantiated with a referto parameter that modifies the key
attribute name.

The module makes use of the facility to associate a DefTableKey to scopes: for each
NAMERangeScope a new key, and for each NAMERangeScopeProp its ScopeKey.
NAMERootScope.NAMEGotEnvKey indicates that all those keys are associated. If that
facility is also used independent of the ShowBinding module, the computations of
NAMERangeScope.NAMEGotEnvKey and
NAMERangeScopeProp.NAMEGotPropEnvKey have to be overridden to avoid interference
with the intended computations.

The module associates a property named NAMELine to each identifier key, and to each
key of a scope. Its value is the line number where the binding is established. An instance of
the NAMESetFirst module is used for that purpose. Line number 0 is shown for definitions
of identifiers and for scopes if they are not established by roles of name analysis modules.
That holds in particular for predefined identifiers and for the root environment.

Chapter 8: Environment Module 37

8 Environment Module

This module implements a standard contour model for name analysis. The data structure is
a tree of scopes, each of which can contain an arbitrary number of definitions. A definition
is a binding of an identifier to an object in the definition table (see Section “top” in PDL
Reference Manual). For an identifier idn and a scope sc there is at most one binding in sc.

The environment module provides operations for building scope trees, adding definitions
to specific scopes, and searching individual scopes or sequences of scopes for the binding of
a particular identifier. Inheritance relations can be established between scopes to support
object-oriented name analysis.

The module is capable of building multiple trees of scopes in order to model distinct
name spaces, such that bindings in one tree do not effect the lookup in another tree.

The module places no constraints on the sequence of construction, definition and lookup
operations; there is one exception: an inheritance relation may not be established for a
scope that has already been involved in a lookup operation.

The module implements certain lookup operations such that linear search through several
scopes is avoided in order to reduce the amortized asymptotic cost of name analysis. This
effect on efficiency can be lost if the sequence of those lookup operations arbitrarily often
switches the scopes they are applied to.

The modules described in the Name Analysis Library (see Section “Name Analysis” in
Specification Module Library: Name Analysis) provide solutions for common name analysis
tasks based on this environment module. If they are used the interface of this module is
available for use in .lido specifications; otherwise the interface is made available by adding
$/Name/envmod.specs to the processor specification. In C modules the interface of the
environment module is introduced by #include "envmod.h".

8.1 Exported types and values

The following types and constant values are provided to represent name analysis data:

Environment

A pointer to a node in the tree of scopes. It is used either to refer to a single
scope, or to refer to a scope and all the scopes that are visible from it (i.e. its
ancestors in the tree and the scopes that are inherited by each).

NoEnv A constant of type Environment that represents no environment.

Binding A pointer to a triple (int idn, Environment sc, DefTableKey key) that rep-
resents the binding of the identifier idn in the scope pointed to by sc to the
entity key.

NoBinding

A constant of type Binding that represents no binding.

InheritPtr

An opaque type used to traverse inheritance relations.

NoInherit

A constant of type InheritPtr that indicates the end of an inheritance traver-
sal.

38 Name analysis according to scope rules

8.2 Operations to build the scope tree

The following operations are provided for constructing the tree of scopes:

Environment NewEnv ()

A function that creates a new tree consisting of a single, empty scope and
returns a reference to that empty scope.

Environment NewScope (Environment env)

A function that creates a new empty scope as a child of the scope pointed to
by env and returns a reference to that empty scope.

8.3 Operations to establish inheritance

An inheritance relation from scope fromcl to scope tocl means that the scope tocl inherits
the bindings of the scope fromcl. The following operations are provided to establish and
to check inheritance relations:

int InheritClass (Environment tocl, Environment fromcl)

A function that establishes an inheritance relation from the scope fromcl to
the scope tocl if and only if

• tocl and fromcl are different scopes in the same tree of scopes

• the graph of inheritance relations remains acyclic when adding the relation

• the scope tocl has not yet been involved in a lookup for a binding.

InheritClass returns 1 if the inheritance relation could be established; other-
wise it returns 0.

int Inheritsfrom (Environment tocl, Environment fromcl)

A function that returns 1 if tocl and fromcl are the same scopes, or if there
is a direct or indirect inheritance relation from the scope fromcl to the scope
tocl. Otherwise Inheritsfrom returns 0. After a call of Inheritsfrom, no
further inheritance relation can be established for tocl or fromcl.

8.4 Operations to establish bindings

The following operations are provided to establish a binding within a scope:

Binding BindKey (Environment env, int idn, DefTableKey key)

A function that checks the scope referenced by its env argument for a binding
of the identifier specified by its idn argument. If no such binding is found, a
binding of the identifier idn to the definition table object specified by key is
added to scope env. BindKey returns the value NoBinding if a binding already
exists, and returns the new binding otherwise.

int AddIdn (Environment env, int idn, DefTableKey key)

A macro that calls BindKey. AddIdn returns the value 0 if BindKey returns
NoBinding, and returns 1 otherwise.

Binding BindKeyInScope (Environment env, int idn, DefTableKey key)

A function that has the same effect as BindKey. BindKeyInScope should be
used for efficiency reasons if bindings are established in several different scopes
before lookups are performed in them.

Chapter 8: Environment Module 39

Binding BindIdn (Environment env, int idn)

A function that checks the scope referenced by its env argument for a binding
of the identifier specified by its idn argument. If no such binding is found,
BindIdn obtains a value from NewKey() and binds idn to that value in scope
env. BindIdn returns the the binding associated with idn.

DefTableKey DefineIdn (Environment env, int idn)

A macro that calls BindIdn and returns the key of the binding returned by
BindIdn.

Binding BindInScope (Environment env, int idn)

A function that has the same effect as BindIdn. BindInScope should be used
for efficiency reasons if bindings are established in several different scopes before
lookups are performed in them.

These operations are very similar, but they differ in two aspects:

• The key for the new binding is given as an argument (BindKey, AddIdn,
BindKeyInScope), or a new key is created for the new binding (BindIdn, DefineIdn,
BindInScope).

• Functions that should be preferred for efficiency reasons if several operations on one
scope occur in sequence (BindKey, AddIdn, BindIdn, DefineIdn), or if scopes are
arbitrarily switched between operations (BindKeyInScope, BindInScope).

DefineIdn and AddIdn are provided for compatibility with previous versions of the
environment module.

8.5 Operations to find bindings

The following operations are provided to lookup bindings for given identifiers. For ease of
understanding they are described here as if the bindings of scopes were traversed in a linear
search. In fact the implementation avoids such linear search where possible:

Binding BindingInScope (Environment env, int idn)

A function that checks the scope referenced by its env argument for a binding
of the identifier specified by its idn argument. If no binding for idn is found,
the scopes that are directly or indirectly inherited by env are searched. During
that search, a scope tocl is considered before a scope fromcl if tocl inherits
from fromcl. The first binding found is returned; if no binding is found then
NoBinding is returned.

DefTableKey KeyInScope (Environment env, int idn)

A macro that calls BindingInScope and returns the key of the binding found.
NoKey is returned if no binding is found by BindingInScope.

Binding BindingInEnv (Environment env, int idn)

A function that has the same effect as BindingInScope except that if no binding
for idn is found for scope env then the search continues as if BindingInScope
was applied successively to ancestors of env in the tree of scopes.

DefTableKey KeyInEnv (Environment env, int idn)

A macro that calls BindingInEnv and returns the key of the binding found.
NoKey is returned if no binding is found by BindingInEnv.

40 Name analysis according to scope rules

These operations are very similar, but they differ in one aspect:

• Only the scope given as argument and those scopes it inherits from are considered
for the lookup (BindingInScope, KeyInScope), or the scope given as argument, its
ancestors in the tree of scopes, and those scopes they inherit from are considered for
the lookup (BindingInEnv, KeyInEnv).

KeyInScope and KeyInEnv are are provided for compatibility with previous versions of
the environment module.

8.6 Operations to find additional bindings

The following operations find further bindings that are related in some way to a given one:

Binding OverridesBinding (Binding bind)

A function that yields a hidden binding. Let bind be a binding of
identifier idn in a scope e. Then OverridesBinding returns the value that
BindingInEnv(e,idn) would have returned if the binding bind had not
existed.

Binding NextInhBinding (Environment env, Binding bind)

A function that yields a binding that is also visible due to multiple inheritance
relations. Let bind be a binding of identifier idn in a scope e that has been
obtained by a call BindingInScope(env, idn), BindingInEnv(env, idn), or
NextInhBinding(env, idn), and let tocl be env or its next ancestor that
inherits from e. Then NextInhBinding returns a binding of identifier idn, if
any, in a scope ep that is inherited by tocl but not by e; otherwise NoBinding
is returned.

DefTableKey NextInhKey (Environment env, int idn, DefTableKey key)

A function that has the same effect as NextInhBinding, except that the keys
of bindings (instead of the bindings themselves) are supplied and returned.

8.7 Operations to examine environments

The following operations are provided to obtain information from environments:

Binding DefinitionsOf(Environment env)

A function that returns the first binding of the scope env. It returns NoBinding
if env is NoEnv or if no identifiers are bound in env.

Binding NextDefinition(Binding b)

A function that returns the next binding of the scope EnvOf(b). It returns
NoBinding if b is NoBinding or if b is the last binding of EnvOf(b).

int IdnOf(Binding b)

A function that returns the identifier bound by b. It returns NoIdn if b is
NoBinding.

DefTableKey KeyOf(Binding b)

A function that returns the key bound by b. It returns NoKey if b is NoBinding.

Environment EnvOf(Binding b)

A function that returns the environment containing b. It returns NoEnv if b is
NoBinding.

Chapter 8: Environment Module 41

Environment ParentOf(Environment env)

A function that returns the parent of env in a tree of scopes. It returns NoEnv
if env is NoEnv or if env is the root of the tree.

DefTableKey SetKeyOfEnv(Environment env, DefTableKey k)

A function that associates the key k with the scope env. It returns k unless
env is NoEnv; in that case it returns NoKey.

DefTableKey KeyOfEnv(Environment env)

A function that returns the key k associated with the scope env by the most
recent operation SetKeyOfEnv(env,k). It returns NoKey if env is NoEnv or if
SetKeyOfEnv(env,k) has never been executed.

int IsClass(Environment env)

A function that returns 1 if the scope env has been argument of a call of
InheritClass; otherwise 0 is returned.

InheritPtr DirectInherits(Environment env)

A function that returns the first direct inheritance relation to env established
by a call of InheritClass(env,fromcl). It returns NoInherit if env is NoEnv
or if InheritClass(env,fromcl) has never been invoked.

InheritPtr NextInherit(InheritPtr inh)

A function that returns the next direct inheritance relation. It returns
NoInherit if inh is NoInherit or if there are no more direct inheritances for
the given scope.

Environment EnvOfInherit(InheritPtr inh)

A function that returns the scope fromcl of the inheritance relation inh.

Index 43

Index

A
AddIdn . 38
Algol-like . 5
Algol-like basic scope rules 7
AlgRangeSeq . 15
AlgScope . 5
AnyScope . 8, 10
applied occurrences . 2
attribute Bind . 6, 8, 10
attribute DefCond . 9
attribute Env . 8, 10
attribute GotInhScopes . 32
attribute GotKeys . 8, 10
attribute GotLocKeys . 8
attribute GotScopeProp 23, 24
attribute GotVisibleKeys . 31
attribute GotVisibleKeysNest 31
attribute InheritOk . 28
attribute InhPrecond . 32
attribute InnerScope . 28
attribute Key . 6, 8, 10
attribute NewScope . 32
attribute OpenPrecond . 25
attribute OuterScope . 28
attribute Scope . 8, 9, 23
attribute ScopeKey . 22, 23
attribute ScopeKey . 26, 28
attribute Sym . 2, 3, 8, 10

B
basic scope rules . 4
Bind . 6, 8, 10
BindIdn . 38
binding . 37
Binding . 6, 8, 10, 37
BindingInEnv . 39
BindingInScope . 39
BindInScope . 39
BindKey . 38
BindKeyInScope . 38
bottom-up . 5, 10, 25, 32
BOTTOMUP . 10, 18
BuRangeSeq . 15, 18
BuScope . 5
BuScopeProp . 19

C
C-like . 5
C-like basic scope rules . 10
C-like basic scope Rules . 8
C-like inheritance bottom-up 32
ChkIdUse . 6, 8, 9

ChkInherit . 28, 31, 32
ChkInhIdUse . 29, 31, 32
ChkInhIdUseScopeProp . 31, 32
ChkInhQualIdUse . 29
ChkQualIdUse . 23
consistent renaming . 1
CRangeSeq . 15
CreateNewScope . 11, 25, 32
CScope . 5
CScopeProp . 19

D
DeclaratorWithId . 9
DefineIdn . 39
defining occurrences . 2
DefinitionsOf . 40
DirectInherits . 41

E
Environment . 37
Environment Module . 37
envmod . 37
EnvOf . 40
EnvOfInherit . 41
examples . 1, 6
Examples . 1, 6
ExportInhRange . 31, 32
ExportRange . 22, 24, 31

F
flat range . 7
function AddIdn . 38
function BindIdn . 38
function BindingInEnv . 39
function BindingInScope . 39
function BindInScope . 39
function BindKey . 38
function BindKeyInScope . 38
function DefineIdn . 39
function InheritClass . 38
function Inheritsfrom . 38
function KeyInEnv . 39
function KeyInScope . 39
function NextInhBinding . 40
function NextInhKey . 40
function OverridesBinding 40
function PreDefine . 13, 15
function PreDefineSym . 13, 15

44 Name analysis according to scope rules

G
GetScope . 23, 24
GetScopeProp . 26
GotInhScopes . 32
GotVisibleKeys . 31
GotVisibleKeysNest . 31

I
IdDefScope . 5, 8, 9
IdDefUse . 9
identifier roles . 2
IdInDeclarator . 9
IdnOf . 40
IdSetScopeProp . 25
IdUseEnv . 5, 8, 9, 28
IdUseScope . 5, 8, 9, 28
implicit definitions . 7
inheritance . 31, 32, 37
inheritance of scopes . 26
InheritClass . 28, 38
InheritOk . 28
InheritPtr . 37
InheritScope . 28, 31, 32
Inheritsfrom . 38
InhPrecond . 32
InhRange . 28, 31, 32
InnerScope . 28
IsClass . 41

J
Joined Ranges . 15

K
key . 1
KeyInEnv . 39
KeyInScope . 39
KeyOf . 40
KeyOfEnv . 41

L
Library Name . 1
Line . 35

M
missing definition . 6
Module AlgInh . 31
Module AlgRangeSeq . 18
Module AlgScope . 7
Module BuInh . 32
Module BuRangeSeq . 18
Module BuScope . 10
Module BuScopeProp . 25

Module CInh . 32
Module CRangeSeq . 18
Module CScope . 8
Module CScopeProp . 24
Module envmod . 37
Module PreDefId . 12
Module PreDefine . 12
Module PreDefMod . 14
Module ScopeProp . 22
Module ShowBinding . 34

N
name analysis . 1
name spaces . 37
names . 2
nested ranges . 3
NewEnv . 38
NewScope . 32, 38
NextDefinition . 40
NextInhBinding . 40
NextInherit . 41
NextInhKey . 40
NoBinding . 37
NoEnv . 37
NoInherit . 37

O
OpenElemScope . 19
OpenNewScope . 11, 25
OpenPrecond . 25
OpenSeqScope . 19
OuterScope . 28
OverridesBinding . 40

P
ParentOf . 40
PreDefBind . 13
PreDefine . 13, 15
predefined identifiers . 12
PreDefineSym . 13, 15
PreDefKey . 13
PreDefKeyBind . 13
PreDefMod . 14
PreDefSym . 13
PreDefSymKey . 13
PreDefSymKeyBind . 13
property Line . 35
property Scope . 22
property Scope . 28

Q
QualIdUse 23, 24, 26, 28, 31, 32

Index 45

R
RangeElement . 17
RangeScope . 6, 8, 10, 32
RangeSequence . 17, 19
RecentNewScope . 11, 33
root environment . 8, 10, 13
root symbol . 3
RootEnv . 8, 10, 13
RootScope . 6, 8, 10
running example . 1, 6

S
scope . 37
Scope . 28

scope properties . 19
scope rules . 1, 4
ScopeKey . 26, 28
ScopeProp . 19
separate name space . 7, 9
SetKeyOfEnv . 41

T
terminals . 2
test output . 34
tree grammar . 2
type Binding . 6, 8, 10, 37
type Environment . 37
type InheritPtr . 37

	Tree Grammar Preconditions
	Basic Scope Rules
	Algol-like Basic Scope Rules
	C-like Basic Scope Rules
	C-like Basic Scope Rules Computed Bottom-Up

	Predefined Identifiers
	Joined Ranges
	Joined Ranges Algol-like
	Joined Ranges C-like
	Joined Ranges C-like Bottom-up

	Scopes Being Properties of Objects
	Scope Properties without left-to-right Restrictions
	Scope Properties C-like
	Scope Properties C-like Bottom-Up

	Inheritance of Scopes
	Inheritance with Algol-like Scope Rules
	Inheritance with C-like Scope Rules
	C-like Inheritance Bottom-Up

	Name Analysis Test
	Environment Module
	Exported types and values
	Operations to build the scope tree
	Operations to establish inheritance
	Operations to establish bindings
	Operations to find bindings
	Operations to find additional bindings
	Operations to examine environments

	Index

