1 Products and Parameters .

A product (e.g.: :exe) is a Unix file, a directory or a list of files that can be requested
from Eli. Parameters (e.g.: +fold) allow the requestor to control some characteristics of
the requested product.

Product files can be displayed by appending >, file-lists can be viewed with :viewlist
and generated directories by listing their contents with !1s. A single file named ‘£’ can be
selected from a directory by appending /f to the request for that directory.

For further details see Section “top” in Eli Products and Parameters.

1.1 Processor Generation

jexe Executable file containing the generated processor.
:source File-List with all source and include files making up the processor.

:allspecs
File-List with all files defining a processor.

:gencode File-List with all files generated by Eli from your specifications.
:fwGen Directory with all files specified by one .fw file.

:ligaResults
File-List with all files generated by Liga from your specifications.

+define cpp directive for C compilation.
+fold To suppress case distinctions in identifiers and keywords.
+ignore To switch off the verification of the presence of certain include files.

+parser Selects the parser generator:pgs/cola.

1.2 Generating Specifications
:bnf File containing complete concrete grammar in BNF notation.

:consyntax
File containing complete concrete grammar in EBNF notation.

:pgram File containing complete parsing grammer as given to the parser generator.
:abstree File containing complete tree grammar.

:inst File-List containing instantiated generic module.

tkwd Recognize specified literals as identifiers.

+instance, +referto
For instantiation of specification modules.

1.3 Diagnostics

:warning File containing Warnings noted while deriving a product.
rerror File containing Errors noted while deriving a product.

:warn, :err
Unprocessed warning and error messages.

thelp Executable for browsing Warning and error messages of a derivation. Messages
contain references to documentation.

:parsable

File containing verification protocol of the parsability of the parsing grammar
(LALR(1)).

:showFe, :showMe
File-List with 3 files containing information about the Lido specifications.

:ExpInfo, :0rdInfo, :OptimInfo
Files with Information from Liga on remote attribute access, attribute depen-
dencies, attribute storage.

:gorto Start gorto, a graphical tool for attribute dependence analysis.

1.4 Testing a Generated Processor
:stdout Standard output from a test run, for example
input +cmd=(x.specs:exe):stdout

:run Execute the generated processor, for example

. +cmd=(x.specs:exe) input :run

routput Output files from a test run, for example

input +cmd=(x.specs:exe) :output !ls -1

:dbx, :gdb
Debug a program interactively at the source level.

:mon Monitor a program at the specification level.

:mondbx, :mongdb
Monitor a program at the specification level.

+arg Command line arguments for processor execution (only usable with :mon)
+debug Flag to request debugging information in object files.

+input Directory containing files to be made available during execution.
+monitor Flag to request monitoring support.

+printtokens
Flag to request that tokens be printed as they are read.

+stdin File to be made available as standard input.

1.5 Producing Formatted Documents

:ps PostScript file generated from a TeX file.
:fwTex TeX file generated from a .fw file.

:fwTexinfo
Hypertext document generated from a .fw file.

1.6 Information About the Derivation

I:redo Tell Eli to redo a derivation step, even though no inputs to it have changed.
l:test Ask Eli to check whether an object has been modified.
I:inputs A list of the objects on which this object directly depends.

I :outputs
A list of the objects directly depending on this object.

2 Eli Specifications

The Eli user describes the subproblems of a particular text processing problem in files
of different “type”. The type is indicated by the file name extension. Any of these files
can contain C-style comments and preprocessor directives such as #include, #define and
#ifdef.

.specs A collection of subproblem descriptions, one per line:

word.gla
$/Tool/lib/Name/Nest.gnrc :inst
symbol.lido

.gla A description of the token structure of the input text:

ident : C_IDENTIFIER
string: $’ (auxPascalString) [mkstr]
numb : $[0-9] [mkint]

.con A description of the phrase structure of the input text:

def: set_name ’=’ ’{’ body ’}’
body: element+ .
cond : ’if’ exp ’then’ stmt $’else’.

.lido A description of the structure of a tree and the computations to be carried out
on that tree:
ATTR Sym: int;
SYMBOL set_name INHERITS Entity END;
SYMBOL text COMPUTE
PTGOut (
PTGTable(
CONSTITUENTS set_name.Sym
WITH (int, ADD, ONE, ZER0)));

END;

RULE r_wall: wallspec ::= ’wall’ pos ’;’

COMPUTE

wallspec.done = setwall(pos.x, pos.y);

END;
.map A description of the mapping between the parsing and the tree grammar.
.ctl Options for evaluator generation.
.h, .c C modules for user-supplied functions, variables, types etc.
.head Headers and macro definitions to be inserted into code generated from Lido:

#include "myproc.h"
#define MyValue(s) MyArrayl[s]

.init, .finl

C code to be executed before any processing begins (.init) or after all other
processing is complete (.finl):

{ int s;
s = GetValue(speed,1);
setdelay(1000000/s); %}

.ptg A description of structured output text:

Seq: $ 3
List: $ ",\n\t" $

.pdl A property definition language:
code : mytype; "kcode.h"
size : int;
.0il A description of operator overloading:
OPER iAdd(integer, integer): integer;
OPER rAdd(real, real): real;

INDICATION Plus: iAdd, rAdd, sUnion;
COERCION Float(integer): real;

.clp A description of command line arguments for the generated processor:
speed "-s" int
"-s determines steps per second";

fw Combines a collection of strongly-coupled specifications with documentation
describing their relationships:

@00<c.ptg>e{

Seq: $ 3

e}

@0@<c.lido@>@{

SYMBOL Entity INHERITS IdPtg END;
@}

.delit Specifies literals appearing in a type-‘con’ file that are to be recognized by
special routines.

.gnrc Defines a generic specification module.

3 User Interface

Single characters are quoted with \ in an Eli request; strings are quoted by enclosing them
in apostrophes (’). Spaces and tabs are ignored, and # marks the rest of the line as a
comment. The request 7 starts the documentation browser.

For further details see Section “top” in Interacting with Eli.

object Make a product up-to-date with respect to its inputs.

x.specs+monitor:exe # Make up-to-date
x.specs:parsable< # To your editor
X.specs> # To standard output
x.specs:exe>x.exe # To file x.exe
x.specs:source>src # To directory src

! Execute the remainder of the line as a shell command. If ! is preceded by
object, append the name of the up-to-date product to the end of the line.

= Query or set variables.

7= # Show list of all variables.
Dir=7 # Show ‘Dir’ variable meaning.
History= # Show the value of ‘History’.
ErrLevel=1 # Set ‘ErrLevel’ to ‘1°.

control character
Request editing with history. Starred commands accept a repeat count (e.g.
‘+ESC 4 “P+’). Arrow keys can be used to move in the history.

"A Move to the beginning of the line

"Bx Move left in the line (left arrow)

"E Move to the end of the line

"F* Move right in the line(right arrow)
“N* Next request in history (down arrow)
"Px Previous request in history (up arrow)
"R* Request a substring to search for

String starts line if it begins with ~
Search forward if repeat count given

