Association of properties to definitions

Uwe Kastens

University of Paderborn
D-33098 Paderborn
FRG

$Revision: 1.9 $

Table of Contents

1 Common Aspects of Property Modules....... 3
2 Count Occurrences of Objects................. 5
3 Set a Property at the First Object Occurrence'7
4 Check for Unique Object Occurrences........ 9
5 Determine First Object Occurrence 11
6 Map Objects to Integers...................... 13
7 Associate Kinds to Objects................... 15
8 Associate Sets of Kinds to Objects 17
9 Reflexive Relations Between Objects........ 19
10 Some Useful PDL Specifications............ 21
11 Deferred Property Association.............. 23

The input for a text processor usually describes objects that have certain properties, e.g.
named entities like variables in a program, or fields of a data base. Their properties are
determined, used, or checked according to the context in which an object occurs. An object
may occur several times in the input. The occurrences are mapped to a unique identification,
a key (see Section “Name Analysis Library” in Name analysis according to scope rules).
Properties are associated and accessed via those keys. Properties are represented by values
of certain types. The Eli tool PDL is used to generate functions that store property values
in a data base of the language processor and that retrieve values from it.

The first section describes how the modules are instatiated and used, the others describe
the modules contained in this library:

Usage Common Aspects of Property Modules
OccCnt Count Occurrences of Objects
SetFirst Set a Property at the First Object Occurrence
Unique Check for Unique Object Occurrences
FirstOcc Determine First Object Occurrence
ObjCnt Map Objects to Integers

Kind Associate Kinds to Objects

KindSet Associate Sets of Kinds to Objects
Reflex Reflexive Relations Between Objects
PropLib Some Useful PDL Specifications

Defer Deferred Property Association

The modules of this library can solve a large variety of tasks. E.g. the OccCnt module
enumerates occurrences of each object. Its result can be used to check whether an identifier
is multiply defined. It can also be used to trigger an output operation exactly once for each
object. Such an output may say how often the identifier occurs in the text, or it may be a
declaration of the identifier in the target code.

Chapter 1: Common Aspects of Property Modules 3

1 Common Aspects of Property Modules

The use of any module of this library requires that objects are identified by keys as computed
by the consistent renaming modules.

All modules of this library, except SetFirst, Reflex, and PropLib, are instantiated by
the same pattern:

$/Prop/ModuleName.gnrc+instance=NAME +referto=KEY :inst
for example
$/Prop/0ccCnt.gnrc+instance=Var +referto=CtrlVar :inst

The instance parameter is used to distinguish several instances of a module that are
used in one specification. If only one instance of a module is used the parameter can
be omitted. The referto parameter is used to specify the name of the Key attribute,
CtrlVarKey in the example above. The value must be the same as that of the referto
parameter specified for the instance of the consistent renaming module which computed the
Key attribute. (The referto parameter is usually omitted, unless there are symbols that
have more than one Key attribute.)

The instantiation of the modules SetFirst, Reflex, and PropLib is described in the cor-
responding section. The modules PropLib and Reflex provide some useful PDL operations
on definition table entries. All other modules of this library provide some computational
role to be used in .1lido specifications. The following applies only to these modules.

The computational results of each module can be accessed using attributes in .lido
computations, or by application of PDL generated access functions applied to object keys,
as described for each module individually.

The computations provided by each module ensure that properties are not accessed
before they are set. For this purpose each module provides a computational role named
NAMERangeModName, where ModName is the name of the module and NAME is the value of the
instance parameter. (Exception: in the module OccCnt it is named NAMERangeCnt.) The
root of the grammar automatically inherits this role. Hence, it need not be used in usual
cases. The condition that all properties are set is provided by an attribute of the range
symbol. It may be used as a precondition for computations which rely on that fact.

In seldom cases it may be necessary that symbols other than the grammar root inherit
that range role in order to avoid cyclic dependencies between computations: if the compu-
tation of a property value in one range of the program depends on the access of a property
in another (e.g. enclosing) range.

Note: The computations of these modules identify program objects by definition table
keys. Hence, ranges specified for the computation of the keys by a unique renaming module,
e.g. RangeScope, are irrelevant for these modules here.

In our running example we use the OccCnt module to check for multiply defined iden-
tifiers. As it is the first use of this module we can ommit the instance parameter. Since
we omitted the referto parameter in the instance of the consistent renaming module that
computes the keys, we omit it here, too:

$/Prop/0OccCnt.gnrc :inst

The central computations of each module are provided by one or several computational
roles, e.g. NAMECount and NAMETotalCnt in case of the OccCnt module. These roles are

4 Association of properties to definitions

usually associated to grammar symbols representing identifier occurrences. In general they
may be associated to any symbol that has a Key attribute.

In order to check for multiply defined identifiers in our running example both the Count
role and the TotalCnt role is associated to defining identifier occurrences. As there are sev-
eral symbols representing defining identifier occurrences which all have to be checked in the
same way, we introduce a new role MultDefChk that comprises the necessary computations:

SYMBOL MultDefChk INHERITS Count, TotalCnt END;

SYMBOL DeflIdent INHERITS MultDefChk END;
SYMBOL ClassDefIdent INHERITS MultDefChk END;
SYMBOL ModDefIdent INHERITS MultDefChk END;

Chapter 2: Count Occurrences of Objects 5

2 Count Occurrences of Objects

The computations of this module enumerate certain occurrences of objects represented by
symbols that have a Key attribute. That are usually certain occurrences of identifiers.

The information computed by the module may be used for different purposes, e.g. for
statistics about the input text, checks for unique occurrences, computations at the first or
the last occurrence, etc.

The module is instantiated by
$/Prop/0OccCnt.gnrc+instance=NAME +referto=KEY :inst

The module provides two computational roles, NAMECount and NAMETotalCnt. The roles
may be associated to one or several grammar symbols.

The role NAMERangeCnt is automatically associated to the grammar root. It usually need
not be used. It is not intended to provide separate counting in different parts of the tree
(see Chapter 1 [Usage|, page 3).

Let k be a key, then all occurrences of k in a NAMECount context are enumerated in
left-to-right depth-first order. The attribute NAMECount .NAMECnt is the number of k’s oc-
currence with respect to this order. The total number of occurrences of k is associated
as the property NAMECnt to k. The role NAMETotalCnt makes it available as an attribute
NAMETotalCnt.NAMETotalCnt. If the NAMECnt property is accessed directly in user’s com-
putations, those have to state NAMERangeCnt . GotNAMECnt as precondition.

In (see Chapter 1 [Usage|, page 3), we explained how to associate these rule to grammar
symbols in order to check for multiply definitions:

SYMBOL MultDefChk INHERITS Count, TotalCnt END;

SYMBOL DefIdent INHERITS MultDefChk END;
SYMBOL ClassDefIdent INHERITS MultDefChk END;
SYMBOL ModDefIdent INHERITS MultDefChk END;

The check is completed by using the results of this module in computations associated
to MultDefChk:

SYMBOL MultDefChk COMPUTE
IF (GT (THIS.TotalCnt, 1),
message (ERROR,
CatStrInd ("identifier is multiply defined: ",
THIS.Sym) ,
0, COORDREF));
END;

The following example demonstrates a different application of this module. Assume we
want to print how often each object in a program is referenced in some context. Hence, any
identifier occurrence has to be counted. To avoid that this module application collides with
the previous, we have to use a different instance of the OccCnt module:

$/Prop/0OccCnt.gnrc +instance=Prnt:inst

That is easily achieved by associating the Count and the TotalCnt roles to the role
IdentOcc previously introduced in our running example:

Association of properties to definitions

SYMBOL IdentOcc INHERITS PrntCount, PrntTotalCnt COMPUTE
IF (EQ (THIS.PrntCnt, 1),
printf ("identifier %s occurs %d times\n",
StringTable (THIS.Sym), THIS.PrntTotalCnt));
END;

Chapter 3: Set a Property at the First Object Occurrence 7

3 Set a Property at the First Object Occurrence

This module associates values of type TYPE as property NAME to objects identified by keys.
The property is set at most once at the first occurrence of the object which has the
NAMESetFirst role. The module may for example be used to associate source coordinates
of defining identifier occurrences to objects.

The module instantiation differs from the usual pattern for this library:
$/Prop/SetFirst.gnrc+instance=NAME +referto=TYPE :inst
Note: This module is not applicable to symbol occurrences that do not have an attribute
named Key, e.g. due to the use of the referto parameter for a consistent renaming module.

Values are associated in the first NAMESetFirst context with respect to left-to-right
depth-first tree order. The property value to be set has to be provided by a user’s com-
putation for the attribute NAMESetFirst.NAME (in any, not only the first NAMESetFirst
context).

The role NAMERangeSetFirst is automatically associated to the root of the grammar
(see Chapter 1 [Usage], page 3). The attribute NAMERangeSetFirst.GotNAME has to be
used as a precondition for computations which access the NAME property to guarantee that
the property is set.

If we want to associate the source coordinates of defining identifier occurrences to object
keys in our running example we instantiate this module using the coordinate type CoordPtr
exported by the error module, and the property name DefPt

$/Prop/SetFirst.gnrc+instance=DefPt +referto=CoordPtr :inst

Then the roles of this module are associated to our grammar symbols:

SYMBOL DefPoint INHERITS DefPtSetFirst COMPUTE
SYNT.DefPt = COORDREF;

END;

SYMBOL Defldent INHERITS DefPoint END;

SYMBOL ClassDeflIdent INHERITS DefPoint END;
SYMBOL ModDefIdent INHERITS DefPoint END;

The property computed this way may for example be used to check whether an identifier
occurs in an applied context before its definition, as required e.g. in Pascal. For that
purpose a function CoordLess is used to compare coordinates. (It is provided by the
PropLib module, which is automatically instantiated when this module is used.)

SYMBOL ChkBeforeDef COMPUTE
IF (CoordLess (COORDREF, GetDefPt (THIS.Key, COORDREF)),
message (ERROR,
CatStrInd ("identifier occurs before its definition: ",
THIS.Sym),
0, COORDREF))
DEPENDS_ON INCLUDING DefPtRangeSetFirst.GotDefPt;
END;

The role ChkBeforeDef is then associated to all grammar symbols that represent applied
identifer occurreces which shall be checked.

Chapter 4: Check for Unique Object Occurrences 9

4 Check for Unique Object Occurrences

This module associates a boolean property NAMEUnique to object keys. It has the value 1
if the object occurs only once in the SYMBOL context NAMEUnique. It has the value 0 if it
occurs more than once in the NAMEUnique context; otherwise the property is not set. The
final value of the property is obtained by the attribute NAMEUnique .NAMEUnique, e.g. used
to issue a message indicating multiple occurrences. (The same task can be solved using the
more general module, See Chapter 2 [OccCnt], page 5.)

The module is instantiated by
$/Prop/Unique.gnrc+instance=NAME +referto=KEY :inst

The role NAMERangeUnique is automatically associated to the grammar root (see
Chapter 1 [Usage], page 3).

The multiply defined check for our running example, as explained for the OccCnt module
(see Chapter 2 [OccCnt], page 5), can be also achieved by:

SYMBOL MultDefChk INHERITS Unique COMPUTE
IF (NOT (THIS.Unique),
message (ERROR,
CatStrInd ("identifier is multiply defined: ",
THIS.Sym),
0, COORDREF));
END;

Chapter 5: Determine First Object Occurrence 11

5 Determine First Object Occurrence

This module determines whether a NAMEFirstOcc occurrence of an object is the first
one in left-to-right depth-first tree order. The result is obtained by the attribute
NAMEFirstOcc.IsNAMEFirstOcc that has the value 1 if it is the first occurrence, 0
otherwise. The computations of the module use the property named NAMEFirstOcc. (The
same task can be solved using the more general module OccCnt, See Chapter 2 [OccCnt],
page 5.)

The role NAMERangeFirstOcc is automatically associated to the grammar root (see
Chapter 1 [Usage|, page 3).

The module is instantiated by

$/Prop/FirstOcc.gnrc+instance=NAME +referto=KEY :inst

Chapter 6: Map Objects to Integers 13

6 Map Objects to Integers

This module computes a mapping of object keys to non-negative numbers A number is asso-
ciated as property named NAMEObjNo to each object exactly once. In each NAMERangeObjCnt
subtree the numbers are chosen separately starting from 0 incrementing by 1 (changeable
default). NAMERangeObjCnt is automatically associated to the grammar root.

The module can be used to just count the objects that occur in a range, to prepare for
generating unique identifier names on output, or to map objects of a range to addresses
that are incremented by a certain value.

The module is instantiated by
$/Prop/0bjCnt.gnrc+instance=NAME +referto=KEY :inst

The role NAMEObjCnt has to be associated to grammar symbols such that all
objects that should be considered have an occurrence in such a context. The attribute
NAMEQObjCnt .NAMEQObjNo is the number the object is mapped to.

NAMERangeObjCnt is automatically associated to the grammar root (see Chapter 1 [Us-
age|, page 3). The attribute NAMERangeObjCnt.NAMETotalObjNo is the total number of
objects in that range. The ranges may be nested. The mapping starts anew for each range
node. The mappings of inner ranges do not contribute to outer ranges.

The default start value is 0. It can be changed by overriding the computation of
NAMERangeObjCnt .NAMEInitObjCnt. The computation of NAMEObjCnt . NAMEIncrementCnt
can be overridden to change the default increment value of 1.

If the ObjNo property is accessed by user’s computations, they have to state
NAMERangeObjCnt .NAMETotalObjNo as a precondition.

We demonstrate an application of this module by mapping the objects of out running
example to unique numbers, in order to print unique names as they resulted from the
consistent renaming task. For that purpose the grammar root can be chosen for the range
role. The 0bjCnt is simply attached to the IdentOcc role which represents any identifier
occurrence in our example:

SYMBOL Program COMPUTE
printf ("the program references J%d different objects\n",
THIS.TotalObjNo);
END;
SYMBOL IdentOcc INHERITS ObjCnt COMPUTE
printf ("object %s’d referenced in line %d\n",
StringTable (THIS.Sym), THIS.ObjNo, LINE);
END;

Chapter 7: Associate Kinds to Objects 15

7 Associate Kinds to Objects

Objects in an input text are often classified to belong to one of several kinds, e.g. variables,
procedures or labels in programming languages. They may occur in different contexts
which determine their kind, require that they belong to a certain kind, or select different
computations depending on their kind. Such a classification is often the part of the type
analysis task.

This module can be used for any unique classification of objects which is encoded by
integral values.

If Objects may belong to more than one kind, or occurrences allow for objects of several
kinds the module KindSet (see Chapter 8 [KindSet|, page 17) should be used instead of
this one.

The module is instantiated by
$/Prop/Kind.gnrc+instance=NAME +referto=KEY :inst

This module associates a property named NAMEKind of type int to objects. Two com-
putational roles NAMESetKind and NAMEGetKind are provided.

In a context NAMESetKind the NAMEKind property of the object is set to the value of the
attribute NAMESetKind.NAMEKind, which has to be provided by a user’s computation. In
case that different Kind values are stated for one object in some NAMESetKind contexts the
property value 0 named IntMultiple is associated.

In a context NAMEGetKind the property is accessed and supplied by the attribute
NAMEGetKind.HasNAMEKind. It can be used to check if it is the required kind, or if the kind
is ambigously set (IntMultiple), or if the kind is not set at all (value -1 named (IntNone).

The roles NAMESetKind and NAMEGetKind may be associated to the same grammar sym-
bol. That is necessary if kinds are determined by applications of objects rather than by
definitions, or if a language does not distinguish between defining and applied occurrences.

NAMERangeKind is automatically associated to the grammar root (see Chapter 1 [Usage],
page 3). If the NAMEKind property is accessed in other user’s computations, those have to
state NAMERangeKind .GotNAMEKind as precondition.

IntMultiple and IntNone are defined in a file KindBad.h. If their encoding is incon-
venient for a particular implementation, that file may be overridden by a user supplied file
having the name KindBad.h.

Chapter 8: Associate Sets of Kinds to Objects 17

8 Associate Sets of Kinds to Objects

Objects in an input text are often classified to belong to one or more of several kinds, e.g.
variables, procedures or labels in programming languages. They may occur in different
contexts which determine their kind, require that they belong to a certain kind, or select
different computations depending on their kind. Such a classification is often the part of
the type analysis task.

This module can be used for any classification of objects which is encoded by non negative
integral values.

The module is instantiated by

$/Prop/KindSet.gnrc+instance=NAME +referto=KEY :inst

The module uses sets of kinds implemented by values of type unsigned int provided
by the IntSet module (see Section “Bit Sets of Integer Size” in Bit Sets of Integer Size).
(That module is instantiated automatically with referto parameter int, and the instance
parameter omitted.) Hence the largest code chosen for a kind value must be less than the
number of bits of an unsigned int (16 or 32 implementation dependent).

This module associates a property named NAMEKindSet of type IntSet to objects. Three
computational roles NAMEAddKind, NAMEAddKindSet, and NAMEGetKindSet are provided.

In a context NAMEAddKind the kind value of the attribute NAMEAddKind.NAMEKind is
added to the set of kinds of the object. The attribute has to be provided by a user’s
computation.

Similarly in a context NAMEAddKindSet the IntSet value of the attribute
NAMEAddKindSet .NAMEKindSet is united to the set of kinds of the object. The attribute
has to be provided by a user’s computation.

In a context NAMEGetKindSet the property is accessed and supplied by the attribute
NAMEGetKindSet .HasNAMEKindSet. It can be used to compare the set of required kinds to
the set of associated kinds using functions of the IntSet module.

The roles AddKind and AddKindSet must not be associated to the same grammar symbol.
GetKindSet may be combined with one of them. That is necessary if kinds are determined
by applications of objects rather than by definitions, or if a language does not distinguish
between defining and applied occurrences.

NAMERangeKindSet is automatically associated to the grammar root (see Chapter 1
[Usage|, page 3). If the NAMEKindSet property is accessed in other user’s computations,
those have to state NAMERangeKindSet .GotNAMEKind as precondition.

This module also provides three operations that modify NAMEKindSet properties stored
in the definition module:

InsertNAMEKindSet (k,1i) inserts element i into the set stored for key k, and yields the
new set as result.

UnionNAMEKindSet (k,s) adds the set s to the set stored for key k, stores the result and
returns it.

IntersectNAMEKindSet (k,s) intersects the set s with set stored for key k, stores the
result and returns it.

We demonstrate the use of this module in our running example. It shall be analysed if
each variable occurs at least once on the lefthand side of an assignment and on the righthand

18 Association of properties to definitions

side. Hence, we introduce the kinds VarAssigned and VarUsed. A variable can have any set
of the values depending on its occurrences. The values are named by a .head specification:
#define VarAssigned 1
#define VarUsed 2
In our tree grammar the two occurrences of variables can be distinguished for the symbol
Variable rather than for the symbol UseIdent. Hence we propagate the Key attribute of
Useldent upto Variable and apply the module roles there:

SYMBOL Variable: Key: DefTableKey;

RULE: Variable ::= Useldent COMPUTE
Variable.Key = Useldent.Key;

END;

RULE: Statement::= Variable ’=’ Expression ’;’ COMPUTE
Variable.Kind = VarAssigned;

END;

RULE: Expression ::= Variable COMPUTE
Variable.Kind = VarUsed

END;

SYMBOL Variable INHERITS AddKind END;

In the context of a variable declaration the set of kinds is checked using functions of the
IntSet module:

SYMBOL DefIdent INHERITS GetKindSet END;
RULE: 0ObjDecl ::= TypeDenoter DefIdent COMPUTE
IF (NOT (InIS (VarAssigned, DefIdent.HasKindSet)),
printf ("variable %s declared in line %d is never assigned\n",
StringTable (Defldent.Sym), LINE));

IF (NOT (InIS (VarUsed, DefIdent.HasKindSet)),
printf ("variable %s declared in line %d is never assigned\n",
StringTable (DefIdent.Sym), LINE));
END;

Chapter 9: Reflexive Relations Between Objects 19

9 Reflexive Relations Between Objects

This module introduces properties that relate object keys pairwise to each other, e.g. a type
and its pointer type.

The module is instantiated by
$/Prop/Reflex.gnrc+instance=NAME :inst

It defines a pair of properties NAMETo and NAMEFrom that have values of type DefTableKey
that relate keys pairwise to each other. When the relation is established between two keys
kf and kt GetNAMETo (kf, NoKey) == kt and GetNAMEFrom (kt, NoKey) == kf hold.

The relation is established by a call Ref1exNAMETo (kf) that yields a new key kt, or by
ReflexNAMEFrom (kt) that yields a new key kf. Any further such call yields the same key
as result.

Typical applications of such relations are found in type analysis tasks: Types can be
represented by keys. Assume intKey represents the type int, then a call ReflexPointerTo
(intKey) yields a key representing a type pointer to int. Using the Reflex functions
guarantee that there is exactly one key representing the type pointer to int. Here the
module is instantiated with the generic parametr +instance=Pointer. The same pattern
can be applied for other unary type constructors.

Chapter 10: Some Useful PDL Specifications 21

10 Some Useful PDL Specifications

This module specifies a set of useful generic PDL patterns. If such patterns are associated
to a property specification PDL generates additional access functions for that property.

For example the PDL property specification
Size: int [SetGet, SetDiff];
allows to set the Size property using the functions SetGetSize and SetDiffSize besides
the basic access functions provided by PDL.
The module does not have generic parameters. It is used by writing
$/Prop/PropLib.fw
in a .specs file.
It provides the following PDL patterns:

SetGet: The SetGet functions have same effect as the basic Set function. But the value
which is set is also returned as result of the call.

SetOnce: The SetOnce functions have one value argument like the Reset functions. The
given value is only set if that property is not yet set. The current value of the property is
returned as result of the call.

KReset: The KReset functions have same effect as the basic Reset functions. But the
key is returned as result of the call. By that means one can set several properties for one
key using nested calls.

VReset: The VReset functions have same effect as the basic Reset functions. But the
value which is set is also returned as result of the call.

Trans: The Trans functions are applicable for properties of type DefTableKey. They
have only a key argument. A call TransProp (k) for a property Prop is recursively applied
to the property value until a key is reached for which the property Prop is not set. that key
is returned. The property chain must not be cyclic. E.g. if GetTypeOf (a, NoKey) ==
and GetTypeOf (b, NoKey) == c and GetTypeOf (c, NoKey) == NoKey, then TransTypeOf
(a) ==c.

SetDiff: The SetDiff functions have two value arguments, like the Set functions. The
first value argument is set if the property is not yet set. If the property has a value that
differs from the first value argument, the property is set to the second value argument.

The module also provides comparison functions CoordLess and CoordLessEqual for
source coordinates.

Chapter 11: Deferred Property Association 23

11 Deferred Property Association

This module implements the technique of deferred property association: Many languages
have constructs that define an identifier to denote the same object as another, different
identifier does. Properties accessed or set via the one key should yield the same results or
effects as if the other key was used. Typical examples for such constructs are type definitions
or constant definitions.

The module is instantiated by
$/Type/Defer.gnrc +referto=KEY :inst

The referto parameter modifies the names of Key attributes, and hence, has to be the same
as the referto parameter used for the module instance that supplied those attributes.

The roles of this module relate keys to each other which represent the same object. That
relation has to be acyclic. The properties are associated to the keys at the ends of those
relation chains. A function is provided that walks down the chain when accessing a property
from any of the related keys.

This technique also decouples the computations which establish the equivalence between
keys from those which associate properties to keys. It avoids cyclic dependencies between
computations in cases where properties of entities may be defined recursively, e.g. recur-
sively defined types.

The property Defer implements the relation between keys described here. It should not
be set otherwise than by using the SetDeferId role of this module.

Setting a property to a key that may be an end of a Defer chain should occur in the
context of the SetDeferProp role.

If properties are accessed for a key k that may be on a Defer chain, the result of the call
TransDefer (k) has to be used instead of the the key k itself, e.g. GetKind (TransDefer
(k) , NoKind).

This module uses the PropLib module (See Section “Some Useful PDL Specifications”
in Association of properties to definitions,) to obtain the TransDefer function.

The module provides the following computational roles:

SetDeferlId is a role for a defining occurrence of an identifier. It establishes the Defer
relation from SetDeferId.|KEY|Key to point to SetDeferId.DeferredKey. A lower or
upper computation for THIS.DeferredKey has to be provided. An attempt to complete a
Defer cycle is not executed.

ChkSetDeferId is a role that may be inherited by any identifier occurrence. It checks
whether an attempt was made to complete a Defer cycle involving this key. The role should
be inherited together with SetDeferId, if Defer cycles are not otherwise excluded.

SetDeferProp is a role that characterizes a context where properties may be set to a key
at the end of a Defer chain. Computations that associate the properties have to establish
the postcondition represented by the VOID attribute SYNT.GotDeferProp. The role provides
a default computation for SYNT.GotDeferProp that states the empty postcondition.

RootDefer is inherited by the grammar root by default.

Index

Index

A

AddKindvt i e 17
AddKindSet.......ooiiiiii i 17
attribute Cnt....... 5
attribute DeferredKey 23
attribute GotCnt 5
attribute GotDeferProp...................... 23
attribute GotKind 15, 17
attribute HasKind......................oo.... 15
attribute HasKindSet 17
attribute IncrementCnt 13
attribute InitObjCnt 13
attribute IsFirstOcc..............ccooiion... 9
attribute Key.......... ool 3
attribute Kind...........l 15, 17
attribute KindSet................. 17
attribute ObjNo............. L 13
attribute TotalCnt................ciiuninn.n. 5
attribute TotalObjNo 13
attribute Unique............. ...l 7

C

ChkSetDeferId...........ooiiiiiiiiiiiiinn., 23
CoordLess..........oiiiiiiiiiiiii 7
Count ..oovi i 5
count occurrences of objects................. 5

Defer i 21
Deferred Property Association............... 21
DeferredKeyo, 23
definition before application................ 7

F

FirstOccCooiiii i i 9
GetKind ... 15
GetKindSet...... ..ot 17
GotDeferProp oL 23

I

identifier occurrence 3
instantiation.............ci it 1
IntSet ..ot e 17

25
Kind ... 13
KindSet i 15
KReset ... 21
L
Library Prop.......ccooviiiiiiiiiia .. 1
M
Module Defer.............. ..., 21
Module FirstOcc, 9
Module IntSet............... 17
Module Kind..............oooiiiiiiiiiit, 13
Module KindSet 15
Module ObjCnt.......... oL, 11
Module OccCnt. ... 5
Module PropLib............................... 19
Module PropLib............l 23
Module Reflex.............. 18
Module SetFirst ..., 7
Module Unique.........c.ovvuiiuinnininnnnnnnnnnn 7
O
OBFCIE « oottt e 13
object kind............ ...l 13, 15
P
pairwise related keys.............ooiiiinnn. 18
Pascalo 7
PDL . . 1
PDL pattern..........ocoviiiiii., 19
PO . 1
PLOPEIEY - 1
property Deferol 23
property From.............., 18
property Kind................l 15
property KindSet 17
property ObjNo 11
Property To. ..ot 18
PropLib. ... 7, 23
R
TANEE ettt 3
RangeCnt...........l 5
RangeFirst0cCooutiiiiiiiiiiiiinn 11
RangeKind............ooiiiiiiiiiiiiiiiinnnn. 15
RangeKindSetl 17
RangeObjCntooLLL 13
RangeSetFirst 7

RangeUnique......................... ...l 9

26

ReflexFrom.ot 18
= = o e TP 18
RootDefer.......viiiiii ittt 23

S

SetDeferId.........coiiiiiiiiiiii e, 23
SetDeferProp..................iiiiiiL, 23
SetDiff ... 21
SetGet .ot 21
SetKind 15
SetlnCe ..ot 21
source coordinates............v i, 7

Association of properties to definitions

Totallnt . .ov et e 5
AN « o ettt e e e e e 21
TransDefer...........ooiiiiniiiniiiniinnnnn, 23

	Common Aspects of Property Modules
	Count Occurrences of Objects
	Set a Property at the First Object Occurrence
	Check for Unique Object Occurrences
	Determine First Object Occurrence
	Map Objects to Integers
	Associate Kinds to Objects
	Associate Sets of Kinds to Objects
	Reflexive Relations Between Objects
	Some Useful PDL Specifications
	Deferred Property Association
	Index

