
New Features of Eli4.0

$Revision: 4.1 $

Compiler and Programming Language Group
University of Paderborn, FB 17

33098 Paderborn, FRG

Compiler Tools Group
Electrical and Computer Engineering Department

University of Colorado
Boulder, CO, USA

80309-0425

Department of Computing
School of Mathematics, Physics, Computing and Electronics

Macquarie University
Sydney, NSW 2109

Copyright, 1998 The Regents of the University of Colorado.
Copyright, 1998 University of Paderborn.

Copyright, 1998 Anthony M. Sloane.

This document gives information about new facilities available in Eli version 4.0 and those
modifications made since the previous distributed Eli version 3.8.3 that might be of general
interest. Numerous corrections, improvements, and additions have been made without being
described here. They shall just help users to solve their problem without taking notice of
Eli’s mechanism.

i

Table of Contents

1 Changes to the Eli User-Interface 1

2 Lido News for Eli 4.0 . 3
2.1 Terminals . 3
2.2 TRANSFER . 3
2.3 Separators . 3
2.4 Bottom-Up Evaluation . 4
2.5 CLASS and TREE SYMBOLS . 4
2.6 LIGAPragma . 4
2.7 Terminals in LISTOF productions . 4
2.8 DEPENDS_ON . 4
2.9 LINE, COL, COORDREF . 4
2.10 Chain Productions . 5
2.11 Type Definitions . 5
2.12 Separated CHAINSTART . 5
2.13 LIDO Tokens . 5

3 Changes in Specification Module Library 6
3.1 General Modifications . 6
3.2 New Modules . 6
3.3 Modified Modules . 7

4 New specification types in PTG 8

5 New interface to monitoring 9

6 New command-line processing features 10

Index . 11

Chapter 1: Changes to the Eli User-Interface 1

1 Changes to the Eli User-Interface

Invocation of Eli

Eli is built on top of the Odin-System. Up to Version 3.8.3 of the Eli-System, an Odin-
Version was integrated in the Eli-System. With the years passing, this odin-system was
debugged and adapted to the Eli-System thus making it difficult to integrate new Odin-
Versions developed by the author. While Odin is still distributed with Eli, the directories
for the two are now completely separated. Eli is actually a set of Odin packages.

What does this mean for the Eli-User?

While an ‘eli’ invocation script is still provided, all it does is to set an Odin environment
variable, ODINPATH, to the location of the Eli packages and then invoke the ‘odin’ invocation
script. Note that the command-line options for this script are different than those older
versions of Eli had. Read the manual page for ‘odin’ to learn more about the command-line
options.

In order to start using Eli, you should set up your account with a few environment-
variable settings. First, you must enter the Path to the Odin-System into your Environment-
variable ‘PATH’. Since the exact commandline differs in different shells, the following example
is valid for usage in ‘csh’-compatible shells:

setenv PATH /usr/local/eli/Odin/bin:$PATH

setenv MANPATH /usr/local/eli/Odin/man:$MANPATH

If you wish to use the ‘odin’ script directly, rather than using the ‘eli’ script, you
will have to set the ODINPATH environment variable to point to the directory where the
Eli packages are installed. For example, you might execute the following command before
issuing calls to ‘odin’.

setenv ODINPATH /usr/local/eli/ELI4.0

By default, Odin maintains a cache directory ‘.ODIN’ in your home-directory. If you
dislike this, you can supply a new definition in the environment-variable ‘ODINCACHE’.

Note that with this new version of Odin you can specify Odin requests to execute on
the command-line. Odin will execute the requests and return to the shell. If you do not
provide any command-line requests, Odin will come up interactively, which looks like this:

Eli Version 4.0 (? for help, ^D to exit) (local)

->

Using Eli

In this section, only the main differences between the usage of the Odin-System and the
Eli-System up to Version 3.8.3 will be pointed out. For a more complete introduction, please
refer to Section “Overview” in Eli User Interface Reference Manual.

An Odin command that simply specifies an object makes sure that this object is up to
date. Up to version 3.8.3 of Eli, such an object was immediately displayed on the Terminal.
This is no longer the case. For example, the command x.specs:exe:warning will generate
a file containing all the warnings and errors while deriving the executable from the given
specification. Odin will not display the warnings, however.

Chapter 1: Changes to the Eli User-Interface 2

To display an object, append a > to the derivation. A < appended to an object will invoke
your editor with the filename of the generated object. By appending a ! and a command,
you can invoke a unix-command with the filename of the generated object.

x.specs+arg=(i):run # Make up-to-date

x.specs:parsable< # To your editor

x.specs> # To standard output

x.specs:exe>x.exe # To file x.exe

x.specs:source>src # To directory src

x.specs:absyntax!more # Start ’more’ with product

If an object is executable (e.g. the derivation to ‘:help’ yields an executable object),
this object is immediately executed upon deriving it. So a derivation x.specs:exe:help

starts the help-browser with the error- and warning messages occured while deriveing the
executable. If you append a ‘>’ to the request, you will get the generated executable
shellscript displayed.

Another change in the user interface is, that the history mechanism has been dropped.
Instead, you can browse in older commandlines using the arrow-keys of your keyboard, See
Section “User Interface” in Quick Reference for Eli 4.0, for further information.

Changed names for derived objects

In the following, you will see a list with the names of legal derivations for Eli Version 3.8.3.
After each derivation, a Eli4.0 substitute will be mentioned. Derivations that have not
changed will not be mentioned here.

:err :err has been predefined in Odin to mean an object with the raw error output
from a derivation (Eli3.8-name was :.error) The Eli4.0 name for this is :error.

:warn :warn has been predefined in Odin to mean an object with the raw error and
warning output from a derivation (Eli3.8-name was :.warning) The Eli4.0
name for this is :warning.

+arg=(filename):stdout

Odin has now a more powerful method of executing a generated object. Here,
a directory in which the execution should be performed is the main option.
The commandline must be supplied in the option +cmd. From there, the stan-
dard output or the error output can be obtained as objects. A substitute for
x.specs+arg=(in):stdout is now

. +cmd=(x.specs:exe) (in):stdout

For further information, See Section “Supply Command Line Parameters” in
Products and Parameters Reference.

:gencode is a list of generated .c and .h files generated from the processor-specification.
To display such a list, use a derivation to :viewlist which starts a browser
session with the given list. In total, use :gencode:viewlist instead of the
given Eli3.8-derivation.

This technique also applies to other derivations, for example
:showFe:viewlist, :showMe:viewlist, :allspecs:viewlist and
:source:viewlist.

Chapter 2: Lido News for Eli 4.0 3

2 Lido News for Eli 4.0

2.1 Terminals

In previous LIDO versions non-literal terminals were considered to be symbols that may
have attributes - several inherited attributes and at most one that is supplied when the
node is constructed. Hence, non-literal terminals may have upper symbol computations,
and their attributes may be used in adjacent and in remote contexts.

In the new LIDO version a non-literal terminal, like Ident in a rule

RULE decl: Declaration ::= Ident ’:’ Type END;

may supply a value to computations associated to the RULE context. That value usually
describes a property of the corresponding input token, e. g. the encoding of an identifier
determined by the scanner and passed through by the parser.

The type of the value supplied by a non-literal terminal is specified by a terminal speci-
fication like

TERM Ident : int;

The above construct can be omitted if the type is int, i.e. in all cases where the terminal
is provided by an Eli generated scanner. Types other than int may occur if tree nodes are
created by explicit computations.

The value of a non-literal terminal of a certain context can be used in computations
associated to that context, e. g.

Declaration.Key = DefineIdn (INCLUDING Root.Env, Ident);

There the name of the non-literal terminal stands for its value. If there are several
occurrences of a non-literal terminal in a production, their values are distinguished by
indexing their names, e. g. Ident[1], Ident[2], ...

The values of non-literal terminals may also be used in symbol computations. There the
notation is TERM, TERM[1], TERM[2], ..., e. g. in

SYMBOL Use COMPUTE

SYNT.Key = KeyInEnv (INCLUDING Root.Env, TERM);

END;

In order not to immediatly invalidate existing specifications LIGA still accepts most uses
of old style terminals and internally transforms them into new style terminals.

2.2 TRANSFER

The TRANSFER construct provided by former LIDO versions is no longer available.

2.3 Separators

The new LIDO version requires semicolons (’;’) to terminate RULE and SYMBOL specifications
and computations. In previous versions of LIDO the ’;’ after the last specification or
computations could be ommited.

Chapter 2: Lido News for Eli 4.0 4

2.4 Bottom-Up Evaluation

If computations are to be executed while the input is read they are now to be marked
BOTTOM_UP, e.g.

printf ("immediate reply\n") BOTTOM_UP;

instead of using a LIGAPragma.

Bottom-Up attribute evaluation, i.e. attribute computations during abstract structure
tree construction ("parse-time") is no-longer the default strategy used in Eli. To switch to
Bottom-Up evaluation it has to be activated in an .ctl specification (ORDER: TREE BOTTOM_

UP), See Section “Order Options” in LCL - Liga Control Language, or requested by a
BOTTOM_UP specifier in LIDO See Section “Computations” in LIDO - Reference Manual.

2.5 CLASS and TREE SYMBOLS

Symbols that describe computational roles (e.g. RangeScope) are now explicitly distin-
guished from tree grammar symbols by using the keyword CLASS before SYMBOL, e.g.

CLASS SYMBOL RangeScope COMPUTE ... END;

Symbols that occur in the tree grammar (tree symbols) are specified as TREE SYMBOLS:

TREE SYMBOL expr COMPUTE ... END;

With this extension Liga can then check whether incidentally the name of a tree grammar
symbol coincides with a CLASS symbol, that may be obtained from a library module.

Liga will issue warning messages if there is an INHERITS from a tree grammar symbol,
or if a CLASS symbol is also a tree grammar symbol. For upward compatibility symbol
specifications without TREE or CLASS prefix are still supported.

2.6 LIGAPragma

The LIGAPragma notation of former versions has been substituted by simpler notations (see
Section “Outdated constructs” in LIDO - Reference Manual).

2.7 Terminals in LISTOF productions

In previous LIDO versions terminals were allowed to be used as LISTOF elements, e.g.:

RULE: Idents LISTOF Identifier

This facility is not supported anymore.

2.8 DEPENDS_ON

An alternative token <- for DEPENDS_ON is accepted.

2.9 LINE, COL, COORDREF

If the source coordinates of contexts are used in computations, the identifiers LINE, COL,
COORDREF must occur directly in the Lido text. They may not be introduced by macros
defined in a ‘.head’ file. As a consequence the library module Message has been removed.

If there is no such coordinate usage in a certain context, that information is not stored
in the tree node. The storage needed for the tree is reduced by this means.

Chapter 2: Lido News for Eli 4.0 5

2.10 Chain Productions

Chain Productions of the form

Production ::= SymbName ’IS’ SymbName

are no longer valid.

Productions using ::= now have the same meaning as the former IS. The effect of hiding
such productions from the parser is achieved by mapping the concrete grammar to the tree
grammar.

2.11 Type Definitions

Specifications of the form

Specification ::= ’TYPE’ TypeName [Extern] [’LISTEDTO’ TypeName]

Extern ::= Literal

are no longer valid. TypeNames are now simply introduced by their use.

2.12 Separated CHAINSTART

Computations of the form

Computation ::= ’CHAINSTART’ ChainAttr

are no longer valid.

The keyword CHAINSTART is now attached to the computation that starts the chain.

2.13 LIDO Tokens

The keyword STATIC (equivalent to COMPUTE) is no longer valid.

The := token (equivalent to =) in computations is no longer valid.

The keyword CONDITION in front of plain computations (computations that do not com-
pute an attribute) is now omitted.

Chapter 3: Changes in Specification Module Library 6

3 Changes in Specification Module Library

3.1 General Modifications

The library modules of version 3.6 that have been marked outdated in version 3.8 are
removed now. See Section “Migration of Eli Version 3.6 modules” in Migration of Old
Library Module Usage, for migration.

All changes to modules of version 3.8 which may require updates in existing specifications
are described in Section “Migration of Eli Version 3.8 modules” in Migration of Old Library
Module Usage.

Modules that do not have a generic parameter are used by their name occurring in a
‘.specs’ file, rather than by :inst instantiation. If generic parameters are omitted for an
instantiation the :inst command has still to be used.

All SYMBOL roles provided by any library module are specified CLASS SYMBOL. By
this means accidental name clashes with tree grammar symbols result in warnings. The
INHERITS construct has to be used to associate a module role to a tree grammar symbol.

Symbol roles that issue a message are separated from roles that compute the condition
for such messages. Hence, the message roles can be substituted by individual ones.

3.2 New Modules

Solutions of common type analysis tasks are supported by the following new modules:

The module BasicType provides roles for definition and use of typed objects, for type
notations and type definitions, Section “Typed Entities” in Type Analysis Reference Man-
ual.

The module Defer allows to defer association of properties to objects, as required in
the presence of type definitions or constant definitions, see Section “Deferred Property
Association” in Specification Module Library: Type Analysis.

The module Operator supports resolution of overloaded operators using the Oil tool,
see Section “Operator Identification” in Specification Module Library: Type Analysis. Its
functionality is increased compared to the outdated module AdaptOil.

In the abstract data type library the List module has been augmented by a module
that can be used if instantiations for several different pointer types are needed, see Section
“Linear Lists of Any Type” in Specification Module Library: Abstract Data Types. In that
case a fully typed interface is provided without duplicating the code.

In the output library, two modules for support of pretty printed output have been added.
Section “Pretty Printing” in Specification Module Library: Generating Output, is a module
for the support of word wrapping at a specified right margin. Section “Typesetting for Block
Structured Output” in Specification Module Library: Generating Output, is designed to
output block-oriented program text. Both modules are very similar and use the new Ptg-
Feature of post-processed output.

Chapter 3: Changes in Specification Module Library 7

3.3 Modified Modules

Many details in the name analysis modules are improved. The significant modifications are
described in more detail in Section “Migration of Eli Version 3.8 modules” in Migration of
Old Library Module Usage. It is recommended to check the tables of changed modules and
modified features for adaption of existing specifications.

Most specifications will be affected by the change of the names IdDef to IdDefScope,
and IdUse to IdUseEnv, which help to adapt certain specifications to the use of CLASS
SYMBOLS.

The generic paramerisation of the PreDefId module is another prominent change in the
name analysis modules.

Chapter 4: New specification types in PTG 8

4 New specification types in PTG

Optional Patterns
In a PTG-Specification rule, optional parts can now be specified. These optional
parts will be printed only, if all insertions actually yield output. This can be
applied to simplify list construction, see Section “Optional parts of patterns”
in PTG – a Pattern-based Text Generator.

Additionally, a pattern-construction-function yields the special value PTGNULL,
if its output would be empty. This makes it possible to check a PTGNode for
empty output,

Postprocessing
PTG now processes it’s output by generating applications of a set of output
macros. This enables postprocessing the output, e.g. to implement pretty
printing or changing output destinations, e.g. to process PTG-Output into an
obstack buffer. Applications of this techique are described in the Ptg and the
ModLib-documentation, see Section “Influencing PTG Output” in PTG - a
Pattern-based Text Generator.

See Section “Pretty Printing” in Specification Module Library: Generating Output, for
an application for the PTG Postprocessing abilities.

Chapter 5: New interface to monitoring 9

5 New interface to monitoring

Since the last release of Eli the monitoring support has been almost completely rewritten.
Apart from internal changes to make the event processing more reliable and a little bit more
efficient, the main changes have taken place in the user interface.

The noosa tool which is the main interface to monitoring has a new interface in which all
of the monitors are integrated. Previously a new window was created for each monitor. Now
they are all handled by the one window, with a common transcript area for output. The
only exception is the display of the abstract syntax tree (a new feature) which is performed
in a separate window.

Before attempting to use the new monitoring interface it is best to read through the
monitoring manual. Also, there is extensive online help which should be consulted while
learning the system.

The user interface is somewhat experimental so feedback would be appreciated.

Some work has been done to get the :mondbx and :mongdb derivations working properly
(which they didn’t in the previous release). They have been tested with a variety of debug-
gers but there are some debuggers for which they do not work (e.g., the Solaris non-window
version of dbx). They do work with the windowing version of dbx ("debugger" on Solaris)
and ups (an X-based debugger). As usual some care is needed to keep track of the current
state of execution because the two systems (noosa and the debugger) have different ideas
of when the program is running.

Chapter 6: New command-line processing features 10

6 New command-line processing features

CLP now distinguishes between positional parameters used as input files and other posi-
tional parameters. The former must now be designated as input parameters (this is an
incompatibility between Eli 4.0 and Eli 3.8). There may only be one of these. Its value
is used as the name of the input file (or stdin if the user doesn’t specify a value). Section
“Input parameters” in Command Line Processing .

This new scheme allows processor writers to customise input file handling more closely
by using ’plain’ positional parameters and handling the input processing themselves.

To avoid clashes with the Eli list modules, CLP has been changed to use those modules
instead of its own version (this is an incompatibility between Eli 4.0 and Eli 3.8). Eli
3.8 code that uses the linked lists to access repeated options or positional parameters will
have to be changed to work with Eli 4.0. Section “Repeated options” in Command Line
Processing .

Index 11

Index

B
BOTTOM_UP . 4

C
CHAINSTART . 5
CLASS SYMBOL . 4
COL . 4
COMPUTE . 5
CONDITION . 5
COORDREF . 4

D
DEPENDS_ON . 4

E
empty output . 8

I
INCLUDING . 3
input parameters . 10
IS . 5

L
LIGAPragma . 4
LINE . 4
LISTEDTO . 5

LISTOF . 4

M
mondbx . 9
mongdb . 9
monitoring . 9

N
noosa . 9

O
Optional Patterns . 8

P
Postprocessing . 8

S
STATIC . 5

T
TERM . 3
terminal . 3, 4
TRANSFER . 3
TREE SYMBOL . 4
TYPE . 5

	Changes to the Eli User-Interface
	Lido News for Eli 4.0
	Terminals
	TRANSFER
	Separators
	Bottom-Up Evaluation
	CLASS and TREE SYMBOLS
	LIGAPragma
	Terminals in LISTOF productions
	DEPENDS_ON
	LINE, COL, COORDREF
	Chain Productions
	Type Definitions
	Separated CHAINSTART
	LIDO Tokens

	Changes in Specification Module Library
	General Modifications
	New Modules
	Modified Modules

	New specification types in PTG
	New interface to monitoring
	New command-line processing features
	Index

