Tutorial on Type Analysis

Compiler and Programming Language Group
University of Paderborn
Faculty for Electrical Engineering, Computer Science and Mathematics
Department of Computer Science
33098 Paderborn, Germany

Copyright, 2008 University of Paderborn

Table of Contents

1 Kernel Language................................ 3
1.1 Basic Scope Rules. oo 4
1.2 Types in the Kernel Language..................oooiiiiii.. 5)

2 Type Checking in Expressions................. 9

3 Operator Overloading......................... 11

4 Type Conversionc.cooueuunnn... 13

5 Record Types..............ooiiiiiiiiiiiiin, 15
5.1 Type Equivalence....... i 16
5.2 Qualified Names i 18

6 Array Types i, 21

7 Union Types..........coo ... 25

8 Functions......... 29

9 Type Definitions............................... 35

10 Pointer Types 41

11 Function Types......................., 47

12 Appendix: Syntax............................ 51
12.1 Concrete Kernel Syntax...........oooiiiiiiiiiiiiii .. 51
12.2 Concrete Expression Syntax............c.ooooiiiiiiii .. 51
12.3 Concrete Function Syntax.............cooiiiiiiiiii ... 52

12.4 Other concrete productions ..., 52

Overview

This tutorial is an introduction to the solution of the type analysis task required for pro-
gramming language implementation. It demonstrates many aspects of that task which may
occur in programming languages or in special purpose languages. The tutorial demonstrates
how the components of Eli’s type analysis library are used to solve that task. The tutorial
proceeds from basic aspects, such as declarations, typed entities, and overloaded operators,
up to more complex aspects, such as type definitions and function types.

This tutorial may be used for a practical introduction to the specification techniques for
type analysis, or as a source of examples that show how to solve certain problems, or it may
give hints for language design.

This file is an executable specification. An analyzer for an artificial language can be gener-
ated from it. The language is kept small by restricting it to those constructs necessary to
demonstrate type analysis tasks, not regarding its usability for programming. The gener-
ated analyzer produces output that reports the result of type analysis, i.e. the type property
of program entities, and error reports where examples violate specified language properties.

The explanations in this tutorial assume that the reader is familiar with the use of the Eli
system, with the use of its module library, and knows the general description of the type
analysis task in the documentation of the module library. Furthermore, the reader should
be familiar with basic concepts of the name analysis task. Its solution is a precondition for
type analysis. It is described only briefly in this text. There is a separate tutorial for name
analysis, see Section “Overview” in Tutorial on Name Analysis.

Chapter 1 specifies a small language kernel and solves the name analysis and the type
analysis task for it. The focus of the following chapters is on type analysis only. The
topics are arranged in an order such that no forward references are needed. Readers may
stop reading at any section after section 7. They then have a complete description of the
type analysis task for a language that has the constructs and concepts introduced so far.
(It should even be possible to drop the rest of the specification and generate an analyzer
for the language specified so far. This feature has not yet been tried.) For that purpose
the example language is presented such that from section 5 on each section augments the
language by some new constructs and concepts that demonstrate the aspect of concern.
Readers are asked for some patience until they see what the whole language is.

Chapter 1: Kernel Language 3

1 Kernel Language

We start with a very simple kernel language where a Program is a Block consisting of
Declarations for variables, assignment Statements, and trivial Expressions. Other forms
of Declarations and Expressions are added to the grammar when the type analysis task
is further refined.

Here is a simple example program:
SimpleExamp[1l]==
begin
var int i, int j,
bool b, bool c,
int r, int s;

i=1;

b = true;

r = 3;

j=1;

c = b;

s =1,
end

This macro is attached to a product file.
Structure and notation of the kernel language is specified here by its abstract syntax.
Abstract Kernel syntax|2]==
RULE: Program 1= Block END;
RULE: Block 1= ’begin’ Declarations Statements ’end’ END;
RULE: Declarations LISTOF Declaration END;
RULE: Statements LISTOF Statement END;

RULE: Declaration ::= ’var’ 0ObjDecls ’;’ END;
RULE: ObjDecls LISTOF 0ObjDecl END;

RULE: ObjDecl 1:= TypeDenoter Defldent END;
RULE: TypeDenoter ::= ’int’ END;

RULE: TypeDenoter ::= ’bool’ END;

RULE: TypeDenoter ::= ’void’ END;

RULE: Statement = Variable ’=’ Expression ’;’ END;
RULE: Statement = Expression ’;’ END;

RULE: Expression 1i= Variable END;

RULE: Expression L= IntNumber END;

RULE: Expression = ’true’ END;

RULE: Expression 1= ’false’ END;

RULE: Variable

UseIdent END;

RULE: DefIdent
RULE: Useldent

Ident END;
Ident END;

4 Tutorial on Type Analysis

This macro is invoked in definition 16.

Concrete syntax rules corresponding to the LISTOF constructs above, specifications of the
notations of identifiers, literals, and comments are given in the appendix.

1.1 Basic Scope Rules

The basic task of name analysis is consistent renaming. For each identifier occurrence a Key
attribute is computed such that it identifies a program entity uniquely. Keys are used to
associate properties to program entities and to retrieve those properties in different contexts.
The symbols DefIdent, UseIdent distinguish defining and used identifier occurrences.

The scope rules of a language determine how identifier occurrences are bound to program
entities. We specify Algol-like scope rules for our language. The basic Algol-like scope rule
reads:

A definition of an identifier a is valid in the whole smallest range that encloses
that definition, except inner ranges that contain another definition of a.

Hence, a definition in an outer range is hidden by a definition of the same identifier in an
inner range for the whole inner range. Identifiers may be applied before they are defined.

We instantiate a library module that provides computations according to this scope rule:
Basic scope module[3]==

$/Name/AlgScope.gnrc:inst

This macro is invoked in definition 14.

The use of that module requires that every identifier occurrence has the attribute Sym
representing the identifier encoding. Hence we specify a computational role IdentOcc that
provides that attribute, and will be inherited by any identifier occurrence.

The computational roles RangeScope, IdDefScope, and IdUseEnv are associated to the
corresponding symbols of our grammar:

Kernel scope rules[4]==

TERM Ident: int;
ATTR Sym: int;
CLASS SYMBOL IdentOcc COMPUTE SYNT.Sym = TERM; END;

SYMBOL Block INHERITS RangeScope END;
SYMBOL DefIdent INHERITS IdDefScope, IdentOcc END;
SYMBOL Useldent INHERITS IdUseEnv, IdentOcc END;

This macro is invoked in definition 16.

Erroneous programs may violate the scope rules in two different situations:

e A particular applied identifier occurrence has no valid defining identifier occurrence.

e There are more than one defining identifier occurrences for the same identifier in a

range.

Such situations shall be indicated by error messages. Furthermore, we want every defining
occurrence of a multiply defined identifier be marked by a message.
For that purpose we use the following two library modules:

Message support[5]|==

Chapter 1: Kernel Language 5

$/Tech/Strings.specs
$/Prop/0OccCnt.gnrc:inst

This macro is invoked in definition 14.

The Strings module provides a function that concatenates a string and an identifier, to be
used for error messages related to identifiers.

The 0ccCnt module provides computations that count how often an entity identified by a
Key attribute occurs in certain contexts, in our case in a defining context.

The check for existence of a definition is directly obtained from the module role ChkIdUse.
For the second check we specify a computational role ChkUnique in order to reuse it for
several grammar symbols. If an entity occurs more than once in the ChkUnique context it
is multiply defined.

Scope checks[6]==

SYMBOL UseIdent INHERITS ChkIdUse END;
SYMBOL DefIdent INHERITS ChkUnique END;

SYMBOL ChkUnique INHERITS Count, TotalCnt COMPUTE
IF (GT (THIS.TotalCnt, 1),
message (ERROR,
CatStrInd ("identifier is multiply defined: ",
THIS.Sym),
0, COORDREF));
END;

This macro is invoked in definition 16.

1.2 Types in the Kernel Language

We use the modules Typing to support type analysis. As we are going to specify structural
equivalence for some kinds of type, we also instantiate the module StructEquiv. Type
analysis module[7]==

$/Type/Typing.gnrc:inst

$/Type/StructEquiv.fw

This macro is invoked in definition 14.
So, we have to adopt the modules’ strategy for representing types:

Types are represented by DefTableKeys. Such a key is created for each program construct
which denotes a particular type. The unknown type is represented by NoKey.

The kernel language has only language defined types: int, bool, and void. Each of them
is represented by a known key. Here we introduce only the key for the type void, as the
other types occur in operator specification, and are introduced there: Language defined type
keys[8]==

voidType -> IsType = {1};

This macro is invoked in definition 15.
All type keys have a property IsType, which distinguishes them from keys representing
entities other than types. Usually the property IsType is not set or accessed by user
specifications. Module roles ensure that they are properly used.

6 Tutorial on Type Analysis

The following computations set the Type attributes of the constructs that denote languge
defined types: Language defined types[9]==
RULE: TypeDenoter ::= ’int’ COMPUTE TypeDenoter.Type = intType; END;
RULE: TypeDenoter ::= ’bool’ COMPUTE TypeDenoter.Type = boolType; END;
RULE: TypeDenoter ::= ’void’ COMPUTE TypeDenoter.Type = voidType; END;

This macro is invoked in definition 16.

Further forms of TypeDenoters for user defined types are specified in subsequent sections.

We now consider a variable declaration as an example for a language construct that defines
a typed entity. In our language a variable declaration may define several variables. An
ObjDecl states the type and the name for each of them.

The pair of module roles TypedDefinition and TypedDefId supports the pattern of declar-
ing typed entities: ObjDecl has the role TypedDefinition, i.e. a construct that specifies
the types of all TypedDefIds in its subtree. The attribute ObjDecl.Type has to be set
appropriately:

Declarations[10]==

SYMBOL 0ObjDecl INHERITS TypedDefinition END;
SYMBOL DeflIdent INHERITS TypedDefId END;

ATTR Type: DefTableKey;

RULE: ObjDecl ::= TypeDenoter DefIdent COMPUTE
ObjDecl.Type = TypeDenoter.Type;
END;

This macro is invoked in definition 16.

The module roles TypedUseld classifies a used name of a typed entity, and causes the
attribute TypedUseId.Type to be set to the type defined for that entity. The corresponding
check role issues messages if that classification is violated:
Typed identifiers[11]==

SYMBOL Useldent INHERITS TypedUseld, ChkTypedUseId END;

This macro is invoked in definition 16.
In order to report some results of the type analysis we associate two properties to every type
key: a string value TypeName and the number of the line where the type is introduced. (The
latter will become more significant when user defined types are defined for the language.)
Output properties[12]|==

TypeName: CharPtr; "Strings.h"

TypeLine: int;

intType -> TypeName = {"int"};
boolType -> TypeName = {"bool"};
voidType -> TypeName = {"void"};
intType -> TypeLine = {0};

boolType -> TypelLine = {0};
voidType -> TypeLine = {0};

Chapter 1: Kernel Language

This macro is invoked in definition 15.

For every used identifier the name and the defining line of its type is printed:

output[13]|==
SYMBOL Useldent INHERITS PrtType END;

SYMBOL PrtType COMPUTE
printf ("line %d Type %s defined in line %d\n", LINE,
GetTypeName (THIS.Type, "no type name"),
GetTypeLine (THIS.Type, 0))
<- INCLUDING Program.TypeIsSet;

END;

This macro is invoked in definition 16.
Kernel.specs[14]==

Basic scope modulel[3]

Message support[5]

Type analysis module[7]

This macro is attached to a product file.
Kernel.pdl[15]|==

Language defined type keys[8]

Output properties[12]

This macro is attached to a product file.
Kernel.lido[16]==

Abstract Kernel syntax[2]

Kernel scope rules[4]

Scope checks[6]

Language defined types[9]

Declarations[10]

Typed identifiers[11]

Kernel output[13]

This macro is attached to a product file.
Kernel.gla[17]==

Token notation[137]

This macro is attached to a product file.

Kernel.con[18]==

Concrete Kernel syntax[135]
This macro is attached to a product file.

Oprand.sym[19]|==
Expression mappingl[136]

This macro is attached to a product file.

Kernel

Chapter 2: Type Checking in Expressions 9

2 Type Checking in Expressions

Expressions consist of typed names and literals and of operators that are applied to operands
of certain types and yield a result of a certain type. Determining the types of expressions
and checking the related type rules of the language is a significant subtask of type analy-
sis. The type rules of languages are usually formulated in terms of concepts like "type of
program constructs and entities", "signature of operators", "operator overloading", "type
conversion". They have common and well-understood meaning for type analysis in general.
Of course, the type rules established for a particular language instantiate these concepts in
a specific way, e.g. define a specific set of operators with their signature and state which
conversions may be applied to resolve overloading.

Eli’s type analysis module Expression provides reusable roles and computations to formu-
late the language specific instantiation of the concepts mentioned above. The type analysis
for expressions is generated from such a specification.

Ezxpression module[20]==

$/Type/Expression.gnrc:inst

This macro is invoked in definition 26.

This module carries out type analysis on expression trees, which are subtrees made up of
connected expression nodes. An expression node is a node representing a program construct
that yields a value of a certain type. The module provides the role ExpressionSymbol to
be inherited by symbols that are expression symbols in that sense:

Ezxpression symbols[21]==
SYMBOL Expression INHERITS ExpressionSymbol END;
SYMBOL Variable INHERITS ExpressionSymbol END;

This macro is invoked in definition 27.

The type of each expression node is characterized by two attributes: ExpressionSymbol . Type]]
describes the type of the values this expression may yield. ExpressionSymbol.Required
may be used to specify that the upper context requires the expression to yield a
value of a particular type. As ExpressionSymbol.Required is used to compute
ExpressionSymbol.Type, it may not depend on the Type attribute.

Expression symbols may occur in different contexts with respect to the structure of the
expression trees: root contexts, leaf contexts, and inner contexts. The module provides dif-
ferent computational roles for those contexts. In leaf contexts the type of the leaf expression
must be stated using the computational role PrimaryContext. Note that in the third role
below the expression node is a leaf with respect to the expression tree, although the context
has one subtree, that is not an expression node:

Leaf nodes[22]==

RULE: Expression ::= IntNumber COMPUTE
PrimaryContext (Expression, intType);

END;

RULE: Expression ::= ’true’ COMPUTE

PrimaryContext (Expression, boolType);
END;

10 Tutorial on Type Analysis

RULE: Expression ::= ’false’ COMPUTE
PrimaryContext (Expression, boolType);

END;

RULE: Variable ::= UseIldent COMPUTE
PrimaryContext (Variable, Useldent.Type);

END;

This macro is invoked in definition 27.
The computational role TransferContext is used for contexts that have an expression
node on the left-hand side and one on the right-hand side, and both have the same type
properties:
Transfer nodes[23]|==

RULE: Expression ::= Variable COMPUTE
TransferContext (Expression, Variable);
END;

This macro is invoked in definition 27.
The node representing an assignment statement has two children. Both are considered as
roots of expression trees. For the Variable the assignment context does not impose any
restriction on its type; hence, nothing is specified for that node:
Assignment[24]==

RULE: Statement ::= Variable ’=’ Expression ’;’ COMPUTE

RootContext (Variable.Type, , Expression);
Indication (assignOpr);

END;

This macro is invoked in definition 27.
explain the purpose of assignOpr??
The Expression on the right-hand side of the assignment is required to yield a value of the
type of the Variable.
An expression in the role of a statement is another example for a root context. On execution
the value of the expression will just be discarded. Hence, there is no requirement on its
type to be stated or checked: Ezxpression statement[25]==

RULE: Statement ::= Expression ’;’ END;

This macro is invoked in definition 27.
Expression.specs[26]==

Expression module[20]

This macro is attached to a product file.
Expression.lido[27]|==

Expression symbols[21]

Leaf nodes[22]

Transfer nodes[23]

Assignment [24]

Expression statement[25]

This macro is attached to a product file.

Chapter 3: Operator Overloading 11

3 Operator Overloading

We here extend our language by binary and unary operators in order to demonstrate type
analysis for expressions with overloaded operators.

Operators are overloaded in our language, i.e. an operator symbol like + may denote one
of several operations, e.g. integer addition or logical disjunktion (or). The distinction is
made using the types of the operands. Hence, we associate to an operator symbol like + an
indication like AddOp, which represents a set of operators, like 1Add, bOr.

Each of the following rules associates an indication name to the attribute BinOpr.Indic.
(The indication names are introduced below.)

Operator Indications[28|==

RULE: BinQOpr ::= ’+’ COMPUTE BinOpr.Indic = AddOp; END;
RULE: BinOpr ::= ’-’ COMPUTE BinOpr.Indic = SubOp; END;
RULE: BinQOpr ::= ’*’ COMPUTE BinOpr.Indic = MulOp; END;
RULE: BinOpr ::= ’/’ COMPUTE BinOpr.Indic = DivOp; END;
RULE: UnOpr ::= ’+’ COMPUTE UnOpr.Indic = PlusOp; END;
RULE: UnQOpr ::= ’-’ COMPUTE UnOpr.Indic = NegOp; END;

RULE: UnOpr ::= ’!’ COMPUTE UnOpr.Indic = NotOp; END;

This macro is invoked in definition 34.

For each of the operator indications at least one meaning is specified by one of the following
operation descriptions. The first component of an operation description relates it to an
indication representing the operator symbol, the second component is a unique name for
the operation.

The third component describes the signature of the operation expressed in terms of keys
for predefined types.

All names are automatically introduced as names for definition table keys. They may be
used explicitly in specifications to distinguish operations, or to associate properties to them.

For each language defined operator its signature is specified; operators that have the same
signature can be comprised in one definition: Oil Operation Signatures[29]==

OPER
iAdd, iSub, iMul, iDiv (intType,intType) :intType;
iPlus, iNeg (intType) : intType;
bOr, bAnd (boolType,boolType) :boolType;
bNot (boolType) :boolType;

This macro is invoked in definition 35.
Next, we associate a set of operators to every indication. Here, for example the AddOp is

overloaded with three operations: iAdd and bOr, and MulOp is overloaded with iMul and
bAnd. All other indications have singleton sets: Oil indications[30]==

INDICATION
AddOp: 1iAdd, bOr;
SubOp: iSub;

MulOp: iMul, bAnd;
DivOp: 1iDiv;

12 Tutorial on Type Analysis

PlusOp: iPlus;

NegOp: iNeg;

NotOp: bNot;

This macro is invoked in definition 35.

The operation signatures as given above require operands to have exactly those types. E.g.
a + 1 is illegal if a was of type boolType.
Type analysis for binary and unary expressions needs to compute the Type attribute of the
whole expression (the result type of the operation) and the required types of operands (the
corresponding type of the signature of the identified target operator). The latter may differ
from the type of the operand in case that coercion is applied. We obtain these computations
from the Expression module.

Operator contexts[31]==
SYMBOL BinOpr INHERITS OperatorSymbol END;

RULE: Expression ::= Expression BinOpr Expression COMPUTE
DyadicContext (Expression[1], BinOpr, Expression[2], Expression[3]);
END;

SYMBOL UnOpr INHERITS OperatorSymbol END;

RULE: Expression ::= UnOpr Expression COMPUTE
MonadicContext (Expression[1], UnOpr, Expression[2]);
END;

This macro is invoked in definition 36.

The key of the identified operation could be obtained by BinOpr.0Oper or UnOpr.Oper, if
necessary e.g. for translation.

Operator.con[32]==

Expression syntax[138]

This macro is attached to a product file.
Operator.sym|33|==

Operators[139]

This macro is attached to a product file.
Indications.lido[34]==

Operator Indications[28]

This macro is attached to a product file.
Operator.oil[35]==

0il Operation Signatures[29]

0il indications[30]

This macro is attached to a product file.
Operator.lido[36]==

Operator contexts[31]

This macro is attached to a product file.

Chapter 4: Type Conversion 13

4 Type Conversion

This chapter introduces type conversion to our language. We say, a value of a certain type
t is converted into a corresponding value of some other type s. For example, a conversion
of integral values into floating point values is defined for many languages. We consider such
a conversion be executed by a conversion operator that has a signature t->s. We call a
conversion coercion if the application of a conversion operator is determined implicitly, for
example in the process of overloading resolution.

In order to demonstrate type conversion, we extend our language by a second arithmetic
type for floating point values an call the type real.

The type representation is extended by:
Real type representation[37|==
realType -> TypeName = {"real"};
This macro is invoked in definition 44.
We add a new type denoter to the language
Real type denoter[38]==
RULE: TypeDenoter ::= ’real’ COMPUTE TypeDenoter.Type = realType; END;

This macro is invoked in definition 45.
and introduce literals of type real:
Real literals[39]==

RULE: Expression ::= RealNumber COMPUTE
PrimaryContext (Expression, realType);
END;

This macro is invoked in definition 45.
Now we extend the set of operator specifications by operators for the type real:
Real operators[40]==
OPER
rAdd (realType,realType):realType;
rSub (realType,realType) :realType;
rMul (realType,realType):realType;
rDiv (realType,realType) :realType;

rPlus (realType) :realType;
rNeg (realType) :realType;
This macro is invoked in definition 46.
We specify that the real operators overload the corresponding ones for the type int by
adding them to the corresponding indication:

Real operators overload[41]==

INDICATION
AddOp: rAdd;
SubOp: rSub;
MulOp: rMul;

DivOp: rDiv;

14 Tutorial on Type Analysis

PlusOp: rPlus;
NegOp: rNeg;
This macro is invoked in definition 46.
Now we want to allow that overloading resolution takes conversion from int to real into
account. That means in an expression like a + 1 the operand types need not match exactly
to the signature of a + operator, if coercion could convert the operand types into those
required by the signature. In particular a could have type real. In that case coercion from
int to real would be applied to 1 in order to use the real addition operator.
So, we define such a coercion operator iTor with the signature int->real:
Predefined Coercion Operator[42]==
COERCION
iTor (intType) :realType;
This macro is invoked in definition 46.
Finally we reconsider the type rules for assignments. We want to allow to have an int
variable on the left-hand side and a real expression on the right, say i = 3.4; That means
the result of the expression is to be converted to an int value, which is then assigned to
the variable.
For that purpose we specify a conversion operator rToi with the signature real->int,
and associate it to the operator indication assignOpr which has been introduced for the
assignment context:
Assignment Conversion Operator[43]==
OPER
rToi (realType) :intType;
INDICATION
assignOpr: rToi;
This macro is invoked in definition 46.
Note: The conversion operator rToi is only applicable in a context that is chacterized by the
indication assignOpr, it is NOT applied as a coercion when resolving overloaded operators.
RealType.pdl[44]|==
Real type representation[37]
This macro is attached to a product file.
RealType.lido[45]==
Real type denoter[38]
Real literals[39]
This macro is attached to a product file.
OperatorExtensions.oil[46]==
Real operators[40]
Real operators overload[41]
Assignment Conversion Operator[43]
Predefined Coercion Operator[42]

This macro is attached to a product file.

Chapter 5: Record Types 15

5 Record Types

We introduce record types to our language in order to demonstrate how composed user
defined types are specified. A record type is described by a sequence of field declarations
which have the same semantics as ObjDecls used in variable declarations. A notation for
variables is added that allows to select a component from a variable.

Here is an example program that defines and uses a record variable named rv:
RecordExamp[47]==
begin
var record int i, bool b, real r end rv;
var int j, bool c, real s;

j =1rv.i;
= rv.b;
= rv.r;

end

This macro is attached to a product file.
The following productions describe record types and component selections:

Abstract record syntax[48]==

RULE: TypeDenoter ::= RecordType END;

RULE: RecordType ::=’record’ ObjDecls ’end’ END;
RULE: Variable = Variable ’.’ SelectIdent END;
RULE: SelectIdent = Ident END;

This macro is invoked in definition 62.

An abstraction of a record type is the sequence of component definitions, each consisting
of a type and a name. A RecordType describes such a type abstraction. It inherits the
module role TypeDenotation:

Type denoter[49]==

SYMBOL RecordType INHERITS TypeDenotation END;

RULE: TypeDenoter ::= RecordType COMPUTE
TypeDenoter.Type = RecordType.Type;
END;
RULE: RecordType ::= ’record’ ObjDecls ’end’ COMPUTE
.GotTypeProp =
ORDER (

ResetTypeName (RecordType.Type, "record..."),
ResetTypeline (RecordType.Type, LINE));

END;

This macro is invoked in definition 62.

The last computation above sets the properties TypeName and TypeLine of the created
type for the facility of printing type information we have introduced above. The attribute

16 Tutorial on Type Analysis

GotTypeProp represents that state. It is used in another instance of this RULE context
below, where further properties are associated to the type.

The construct for component selection, e.g. rv.i, demonstrate a typical situation where
type ananlysis and name analysis depend on each other: The type of the variable rv has
a property, which is a scope; it is used to lookup a binding for the selector i. Hence we
instantiate the name analysis module ScopeProp, which supports scopes as properties. It is
adapted to the needs of type analysis by the module TypeDep: Scope property module[50]==

$/Name/ScopeProp.gnrc:inst
$/Type/TypeDep.gnrc:inst

This macro is invoked in definition 60.

The role ExportRange of the ScopeProp module specifies the RecordType to be a range that
may export its bindings to be lookedup outside of that range, e.g. in component selections.
Its scope of component definitions is associated to the ScopeKey. The ScopeKey is specified
to be the type key created by the role TypeDenotation: Range[51]==

SYMBOL RecordType INHERITS ExportRange COMPUTE
SYNT.ScopeKey = SYNT.Type;
END;

This macro is invoked in definition 62.

5.1 Type Equivalence

As record types have non-trivial abstractions, the question arises under which circumstances
two record types are the same. Consider the following examples: RecordEqual[52]==
begin
var record int i, bool b, real r end va;
var record int i, bool b, real r end vc;
var record int j, bool k, real 1 end vd;

va = vc;
va = vd;
end

This macro is attached to a product file.

Typing rules of the language have to state which of the variables va, vc, and vd have the
same type, and which of the assignments are correct. Languages usually apply one of two
different typing rules:

The first rule states that every occurrence of a description of a record type (or of any other
compound type) introduces a type different from all other types, even from those that are
equally notated. Under this rule all three variables have different types. This rule is called
name equivalence, because every type description gets a name - explicitly or implicitly, as
in this example -and types are distingushed by their names.

The second rule states that two types are equal if their abstractions are equal; i.e. the
sequences of components coincide elementwise in the types and names of components. In
the above example va and vc have the same types. This rule is called structural equivalence.

In case of structural equivalence the type rules of the language may define precisely, which
type properties belong to the abstraction that is used to determine type equivalence. For

Chapter 5: Record Types 17

example, the rule could state that the types of the record components belong to the abstrac-
tion, and the names of the components do not belong to it. In that case all four variables
of the above example would have the same type.

The type analysis library provides a module StructEquiv that extends the Typing module,
such that any of these these variants of equivalence rules can be supported: Struct equiv
module[53]==

$/Type/StructEquiv.fw

This macro is invoked in definition 60.

In this language stuctural equivalence is specified, such that for record types only the
sequence of types, but not the names of components are relevant for structural type equiv-
alence.

The following computation in the RULE context of a record type denotation specifies which
properties of a record type are considered for the check whether two types are equivalent.
Here we state two rules:

First, a record type can only be equivalent to a type that is a record type, too. For that
purpose we introduce a key RecordClass that identifies the category of record types: Type
class[bd]==

RecordClass;

This macro is invoked in definition 61.

The rule computation AddTypeToBlock below associates every record type to that initial set
RecordClass. The equivalence check will then partition it as far as necessary into subsets
of record types which are equivalent.

Second, two record types s and t are equivalent if the types of their fields are pairwise
equivalent in the given order. For that purpose a list of component types is computed
ObjDecls.0OpndTypeList using roles of the LidoList module and given as the third argu-
ment of AddTypeToBlock.
Beyond type equivalence, our language requires further checks on type structures. So, the
list of component types is also associated as a property ComponentTypes to the type key by
a function VResetComponentTypes that yields the property value as its result: Component
type property|55]==

ComponentTypes: DefTableKeyList [VReset]; "DefTableKeyList.h"

This macro is invoked in definition 61.
PropLib module[56]==

$/Prop/PropLib.fw

This macro is invoked in definition 60.
The attribute RecordType.GotType states that all properties of the record type are asso-
ciated to its key. Hence, a dependence on the attribute GotTypeProp computed above is
added here. Type equality computation[57)|==

RULE: RecordType ::= ’record’ ObjDecls ’end’ COMPUTE
RecordType.GotType =
AddTypeToBlock

(RecordType.Type, RecordClass,
VResetComponentTypes (RecordType.Type, ObjDecls.OpndTypeList))
<- .GotTypeProp;

18 Tutorial on Type Analysis

END;

SYMBOL ObjDecls INHERITS OpndTypeListRoot END;
SYMBOL 0ObjDecl INHERITS OpndTypeListElem END;

SYMBOL 0ObjDecl COMPUTE
SYNT.DefTableKeyElem = SYNT.Type;
END;

This macro is invoked in definition 62.

5.2 Qualified Names

A record component selection of the form Variable.SelectIdent is considered as a qual-
ified name: The SelectIdent is an applied occurrence of an identifier that is qualified by
the Variable preceeding the dot. Its type is expected to have a scope property that has a
binding for that identifier.

Variable.SelectIdent is a leaf of an expression tree. Its type is determined by the type
of SelectIdent, as specified using the PrimaryContext computation. Selection expres-
sion[58]==

RULE: Variable ::= Variable ’.’ SelectIdent COMPUTE
PrimaryContext (Variable[1], SelectIdent.Type);
END;

This macro is invoked in definition 62.

SelectIdent combines roles of name analysis and type analysis: It is a qualified iden-
tifier use (QualIdUse). The role requires that the attribute SelectIdent.ScopeKey is
computed. A module computation accesses the (Scope property from it, stores it in
SelectIdent.Scope and searches a binding for the identifier; the role ChkQualIdUse gives
a message if the scope exists, but no binding is found. A user computation is required to
check whether the type has a scope property.
The roles TypedUseld, ChkTypedUseId, and PrtType determine, check, and output the type
of the SelectIdent.
Selection types[59]==
SYMBOL SelectIdent INHERITS
QualIdUse, ChkQualIdUse, IdentOcc,
TypedUseld, ChkTypedUseId, PrtType
END;

RULE: Variable ::= Variable ’.’ SelectIdent COMPUTE
SelectIdent.ScopeKey = Variable[2].Type;

IF (EQ (SelectIdent.Scope, NoEnv),
message (ERROR, "selection applied to non record type",
0, COORDREF));
END;

This macro is invoked in definition 62.

Record.specs[60]==

Chapter 5: Record Types

Scope property module[50]
Struct equiv module[53]
PropLib module[56]

This macro is attached to a product file.
Record.pdl[61]==

Type class[54]

Component type property[55]

This macro is attached to a product file.

Record.lido[62]==

Abstract record syntax[48]
Type denoter[49]

Range[51]

Type equality computation[57]
Selection expression[58]
Selection types[59]

This macro is attached to a product file.

Chapter 6: Array Types 21

6 Array Types

We now add array types to our language. We specify that two array types are structural
equivalent if their element types are equivalent, and if the types have the same number of
elements. Hence, type equivalence is not only determined by the component types.
Here is an example program that uses arrays, records, and type definitions in combination:
ArrayExamp[63]==
begin
var int k;
var int[5] pi, int[5] pj;
var record int i, bool b, reall[3] r end [2] rv;
type bool[4] bt;
var bt vbt, bt wbt;
var reall[6][7] m;
pill]l = k;
vbt = wbt;
rv[2].b = true;
rv[1].r[k] = 3.2;
m[1] [k] = 1.0;
end

This macro is attached to a product file.
We extend the grammar by notations for array type denoters and by indexed variables:
Abstract array syntaz[64]==

RULE: TypeDenoter ::= ArrayType END;
RULE: ArrayType ::= TypeDenoter ’[’ ArraySize ’]’ END;
RULE: ArraySize IntNumber END;

RULE: Variable

This macro is invoked in definition 74.

Variable ’[’ Expression ’]’ END;

In this language an array type is described by two properties: the element type and the
number of elements: Array type properties[65]|==

ElemType: DefTableKey;

ElemNo: int;

This macro is invoked in definition 73.
In the context of a type denotation for an ArrayType the two properties of the type are
set together with the TypeName to indicate the array type in the output. The attribute
GotTypeProp specifies that these properties are set.

Array type denoter[66]==
SYMBOL ArrayType INHERITS TypeDenotation END;

RULE: ArrayType ::= TypeDenoter ’[’ ArraySize ’]’ COMPUTE
.GotTypeProp =
ORDER
(ResetElemType (ArrayType.Type, TypeDenoter.Type),

22 Tutorial on Type Analysis

ResetElemNo (ArrayType.Type, ArraySize.Size),
ResetTypeName (ArrayType.Type, "array..."),
ResetTypeline (ArrayType.Type, LINE));

END;

TERM IntNumber: int;

SYMBOL ArraySize: Size: int;

RULE: ArraySize ::= IntNumber COMPUTE
ArraySize.Size = IntNumber;

END;

RULE: TypeDenoter ::= ArrayType COMPUTE
TypeDenoter.Type = ArrayType.Type;

END;

This macro is invoked in definition 74.

Finally it is stated that array elements of type void are not allowed. We can not simply
compare voidType and the type key, because TypeDenoter.Type not necessarily contains
the final element type; it may be related to it. The final type key is obtained by the function
FinalType in a state that is characterized by INCLUDING Program.TypeIsSet. Array check
element type [67]==
RULE: ArrayType ::= TypeDenoter ’[’ ArraySize ’]’ COMPUTE
IF (EQ (FinalType (TypeDenoter.Type), voidType),
message (ERROR, "Wrong element type", 0, COORDREF))
<- INCLUDING Program.TypelsSet;
END;
This macro is invoked in definition 74.
Two array types are equivalent if and only if their element types are equivalent and if they
have the same number of elements.
In order to state the equivalence with respect to array sizes, we establish a bijective mapping
between any array size that occurs in the program and a definition table key. That number
mapping is computed by turning an array size into an identifier and then binding that
identifier in a scope that serves just this purpose.

Size mapping|[68]==
$/Tech/MakeName.gnrc:inst
$/Name/CScope.gnrc+instance=SizeMap :inst
This macro is invoked in definition 72.
Array size mapping[69]|==
SYMBOL ArraySize INHERITS SizeMapldDefScope END;

RULE: ArraySize ::= IntNumber COMPUTE
ArraySize.Sym = IdnNumb (O, IntNumber);
END;

Chapter 6: Array Types 23

This macro is invoked in definition 74.

The ArraySize.Key serves as the initial set of potential equivalent array types; it is used
as the second argument of the RULE computation AddTypeToBlock. The type of the
element may contribute to type equivalence of array types. Hence, the third argument of
AddTypeToBlock is a singleton list, which is also set as the ComponentTypes property of
the array type:

Array type equivalence[70]==

RULE: ArrayType ::= TypeDenoter ’[’ ArraySize ’]’ COMPUTE
ArrayType.GotType =
AddTypeToBlock
(ArrayType.Type, ArraySize.Key,
VResetComponentTypes

(ArrayType.Type, SingleDefTableKeyList (TypeDenoter.Type)))
<- .GotTypeProp;
END;

This macro is invoked in definition 74.
Type analysis in the context of an indexed variable is specified as a join of three expres-

sion subtrees: Variable[1], the left-hand side of the rule is a leaf of an expression tree.
PrimaryContext is used to state that its type is the ElemType property of Variable[2].

Variable[2], which yields the array, is considered to be the root of an expression subtree.
No requirements are specified. It has to be checked explicitly that its type is an array type.

The subcript expression is a separate expression subtree. It has to be of type int, as specified
by its Required attribute.
Indezing[T1]==

RULE: Variable ::= Variable ’[’ Expression ’]’ COMPUTE
PrimaryContext
(Variable[1],
GetElemType (Variable[2].Type, NoKey));

IF (EQ (GetElemType (Variable[2].Type, NoKey), NoKey),
message (ERROR, "Not an array", O, COORDREF));

Expression.Required = intType;

END;

This macro is invoked in definition 74.
Array.specs|[72]==

Size mappingl[68]

This macro is attached to a product file.
Array.pdl[73|==

Array type properties[65]

This macro is attached to a product file.

Array.lido[74]|==

24

Abstract array syntax[64]
Array type denoter[66]

Array check element type [67]
Array size mapping[69]

Array type equivalence[70]
Indexing[71]

This macro is attached to a product file.

Tutorial on Type Analysis

Chapter 7: Union Types 25

7 Union Types

We introduce union types to our language in order to demonstrate how subtype relations and
their coercions are specified. A union type is described by a sequence of type denotations,
which constitute the subtypes of the specified union type. A value of one of the subtypes
can be coerced to the union type. A value of a union type can be treated as a value of one
of the subtypes using a cast operation or a case statement.
Here is an example program that defines and uses a union variable named rv:
UnionExamp[75]==
begin
var union int, bool end rv;
var int j, bool c;
rv = 42; rv = true;
j = <int> rv;
case rv of
int t: j = t;
bool t: ¢c = t;
end
end

This macro is attached to a product file.

In the case statement the case expression has a union type. Each case declares a variable
of a subtype of that union type. The branch which corresponds to the current type of the
case expression is selected, its variable is initialized with the value of the case expression,
and the statement is executed.

The following productions describe union types, type casts, and case statements: Abstract
union syntaz[76]==

RULE: TypeDenoter ::= UnionType END;

RULE: UnionType ::= ’union’ UnitedTypes ’end’ END;

RULE: UnitedTypes LISTOF UnitedType END;

RULE: UnitedType ::= TypeDenoter END;

RULE: Expression ::= ’<’ TypeDenoter ’>’ Expression END;
RULE: Statement ::= CaseStmt END;

RULE: CaseStmt ::= ’case’ Expression ’of’ Cases ’end’ END;
RULE: Cases LISTOF Case END;

RULE: Case ::= 0ObjDecl ’:’ Statement END;

This macro is invoked in definition 88.

The following computations introduce a type denoter for union types and associate proper-
ties for test output to it: In order to check whether a type is a union type, as required for
example in a case statement, we introduce a property IsUnionType. Is union typel77]==
IsUnionType: int;
This macro is invoked in definition 87.

Union type denoter|[78]==

26

Tutorial on Type Analysis

SYMBOL UnionType INHERITS TypeDenotation END;

RULE: UnionType ::= ’union’ UnitedTypes ’end’ COMPUTE
.GotTypeProp =
ORDER (

ResetIsUnionType (UnionType.Type, 1),
ResetTypeName (UnionType.Type, "union..."),
ResetTypelLine (UnionType.Type, LINE));

END;

RULE: TypeDenoter ::= UnionType COMPUTE
TypeDenoter.Type = UnionType.Type;

END;

This macro is invoked in definition 88.

For the comparison of union types stuctural equivalence is specified, such that the fact that
it is a union type and the sequence of subtypes are relevant for type equality. UnionClass
is the the set containing all union types for initialization of the equivalence check.

Union type class[79]==

UnionClass;

This macro is invoked in definition 87.

The UnionClass and the sequence UnitedTypes.0OpndTypeList are used as arguments of
AddTypeToBlock to specify type equivalence of union types. Property ComponentTypes is
set accordingly:

Union type equality computation|[80]==

RULE: UnionType ::= ’union’ UnitedTypes ’end’ COMPUTE
UnionType.GotType =
AddTypeToBlock

(UnionType.Type, UnionClass,
VResetComponentTypes (UnionType.Type, UnitedTypes.OpndTypeList))]]
<- .GotTypeProp;
END;

SYMBOL UnitedTypes INHERITS OpndTypelListRoot END;
SYMBOL UnitedType INHERITS OpndTypelistElem END;

RULE: UnitedType ::= TypeDenoter COMPUTE
UnitedType.Type = TypeDenoter.Type;
UnitedType.DefTableKeyElem = UnitedType.Type;

END;

This macro is invoked in definition 88.

Note, that here the order of the subtypes in the type denoter is relevant for type equality. If
that is not desired, one could for example sort the list of the component types in a canonical
order before using it as an argument of AddTypeToBlock.

Chapter 7: Union Types 27

For each union type we introduce two groups of conversion operators: A widening coercion
from each subtype type to the union type, and a down cast from the union type to each
subtype. For the latter an indication has to be introduced: Downcast indication[81]==

DownCast;
UnionWiden;

This macro is invoked in definition 87.

As a pair of operators has to be introduced for each subtype, the context of the subtype
denoter is the right place to do it. The coercion operator is not created explicitly; it is
only stated that the subtype is Coercible to the union type. The down cast conversion is
introduced as a MonadicOperator:

Widening coercion computation[82]==

SYMBOL UnitedType INHERITS OperatorDefs COMPUTE
SYNT.GotOper =
ORDER
(Coercible (UnionWiden, THIS.Type, INCLUDING UnionType.Type),
MonadicOperator
(DownCast, NewKey(),
INCLUDING UnionType.Type, THIS.Type));
END;
This macro is invoked in definition 88.
The context of the down cast construct imposes a requirement on the type of the operand
expression. Any conversion operator of the DownCast indication can be applied to the
operand expression, in addition to any coercions, to satisfy this requirement:
Down cast[83]==

RULE: Expression ::= ’<’ TypeDenoter ’>’ Expression COMPUTE
CastContext (Expression[1], , Expression[2], TypeDenoter.Type);
Indication (DownCast);

END;

This macro is invoked in definition 88.
In a case statement it is required that the case expression has a union type:
Union case statement[84]|==

SYMBOL CaseStmt: Type: DefTableKey;

RULE: CaseStmt ::= ’case’ Expression ’of’ Cases ’end’ COMPUTE
CaseStmt.Type = Expression.Type;

IF (NOT (GetIsUnionType (Expression.Type, 0)),
message (ERROR, "Case expression must have a union type",
0,COORDREF))
<- INCLUDING Program.TypelsSet;
END;

This macro is invoked in definition 88.

Each branch of a case statement forms a range for the declaration of the variable that gets
the value of the case expression if that case is selected. It is required that the type of the

28 Tutorial on Type Analysis

variable is a subtype of the type of the case expression. We here require that it is coercible
to the type of the case expression, although that is not quite exact. Union case[85]|==

SYMBOL Case INHERITS RangeScope END;

RULE: Case ::= 0ObjDecl ’:’ Statement COMPUTE
IF (NOT (IsCoercible
(ObjDecl.Type, INCLUDING CaseStmt.Type)),
message (ERROR, "Must be a subtype of the case expression",
0, COORDREF))
<- INCLUDING Program.GotType;
END;

This macro is invoked in definition 88.

In other contexts ObjDecl occurs in a CHAIN. To avoid an error message on missing a chain
start we apply the role OpndTypeListRoot here, which has the CHAINSTART, although
that role is not needed:

Union CHAIN workaraound[86|==

SYMBOL Cases INHERITS OpndTypeListRoot END;

This macro is invoked in definition 88.
Union.pdl[87]==

Is union typel77]

Union type class[79]

Downcast indication[81]

This macro is attached to a product file.
Union.lido[88]==

Abstract union syntax[76]

Union type denoter[78]

Union type equality computation[80]

Widening coercion computation[82]

Down cast[83]

Union case[85]

Union case statement[84]

Union CHAIN workaraound[86]

This macro is attached to a product file.
Union.con[89]==
Concrete union syntax[144]

This macro is attached to a product file.

Chapter 8: Functions 29

8 Functions

This chapter introduces definitions and calls of parameterized functions. Type analysis has
to check that the signature of a function call matches the signature of the called function,
and that functions return a value of the specified type.

Here is an example program that defines some functions. The grammar for function calls
and return statements is given below.

FunctionExamp[90]==
begin
var int i, int j,
bool b, bool c,
real r, real s;

fun £ (int x, real y) real
begin r = x * y; return r;end;

fun g (real z) void
begin r = z; return; end;

s = f (i+1, 3.4);
g (£ (3, s));
return;

end

This macro is attached to a product file.

We first extend the grammar by productions for function declarations: Abstract function
syntax[91]==

RULE: Declaration ::= FunctionDecl END;

RULE: FunctionDecl ::= ’fun’ Defldent Function ’;’ END;
RULE: Function ::= FunctionHead Block END;

RULE: FunctionHead ::= ’(’ Parameters ’)’ TypeDenoter END;
RULE: Parameters LISTOF Parameter END;

RULE: Parameter ::= TypeDenoter DefIldent END;

This macro is invoked in definition 100.

A function type is characterized by its signature, i.e. the sequence of the types of its
parameters and the result type. (Note: If we had more than one mode of parameter passing,
the abstraction of a parameter in the function signature would be a pair: parameter passing
mode and parameter type.)

We first consider the name analysis aspect of a function declaration: The Function subtree
is a range where the parameter definitions are valid. The function Block is nested in
that range. Since the DefIdents of parameters are already completely specified for name
analysis, we need only:
Function range[92]==

SYMBOL Function INHERITS RangeScope END;

This macro is invoked in definition 100.

30 Tutorial on Type Analysis

Now we consider a function declaration as a definition of a typed entity, and apply the same
specification pattern as used for variable declarations. Furthermore, each Parameter is also
a TypedDefinition. There is no problem in nesting definitions of typed entities this way.

Function declaration types[93]==
SYMBOL FunctionDecl INHERITS TypedDefinition END;

RULE: FunctionDecl ::= ’fun’ Defldent Function ’;’ COMPUTE
FunctionDecl.Type = Function.Type;

END;

RULE: Function ::= FunctionHead Block COMPUTE
Function.Type = FunctionHead.Type;

END;

SYMBOL Parameter INHERITS TypedDefinition END;

RULE: Parameter ::= TypeDenoter Defldent COMPUTE
Parameter.Type = TypeDenoter.Type;
END;

This macro is invoked in definition 100.

Next, we specify how the type of a function is composed. The FunctionHead, which contains
the signature, is treated as a TypeDenotation for a function type.

Function type|94]|==
SYMBOL FunctionHead INHERITS TypeDenotation, OperatorDefs END;

This macro is invoked in definition 100.

Furthermore, a function declaration introduces an operator. This is indicated by the
role OperatorDefs. The computation ListOperator creates a new operator, identified
by FunctionHead.Type. The types of the parameters together with the result type
TypeDenoter.Type form its signature.

Function signature[95]==

RULE: FunctionHead ::= ’(’ Parameters ’)’ TypeDenoter COMPUTE
FunctionHead.GotOper +=
ListOperator (
FunctionHead.Type,
FunctionHead.Type,
Parameters.OpndTypelist,
TypeDenoter.Type) ;
END;

SYMBOL Parameters INHERITS OpndTypeListRoot END;
SYMBOL Parameter INHERITS OpndTypelListElem END;

RULE: Parameter ::= TypeDenoter Defldent COMPUTE
Parameter.DefTableKeyElem = TypeDenoter.Type;
END;

Chapter 8: Functions 31

This macro is invoked in definition 100.

Function calls are integrated in the expression syntax of our language. We chose a very
general form of an Expression to denote the function to be called. That allows us to later
expand the language by expressions which yield a function. That feature does not create
additional problems for type analysis.

We also introduce return statements into our language:
Abstract call syntaz[96]==

RULE: Expression ::= Expression ’(’ Arguments ’)’ END;
RULE: Arguments LISTOF Argument END;

RULE: Argument 1:= Expression END;

RULE: Statement ::= ‘return’ ’;’ END;

RULE: Statement ::= ’return’ Expression ’;’ END;

This macro is invoked in definition 100.

Type analysis for a function call is straight-forward: A call is treated as an operation which
takes the arguments as operands. Expression[2] yields the function to be called. Its type
provides the operator indication, which may be overloaded with several operations, as stated
in the context of the function definition. The precoined computation ListContext connects
the expression subtree of the arguments with Expression[1] representing the result.

Call types|97)==

SYMBOL Arguments INHERITS OpndExprListRoot END;
SYMBOL Argument INHERITS OpndExprListElem END;

RULE: Expression ::= Expression ’(’ Arguments ’)’ COMPUTE
ListContext (Expression[1], , Arguments);
Indication (Expression[2].Type);

IF (BadOperator,
message
(ERROR,
"Call does not match the functions’ signatures",
0, COORDREF));
END;

This macro is invoked in definition 100.

The following context connects the Argument node with the expression subtree forming
the actual parameter. If they had the same type properties, we would have used a
TransferContext computation. However, in our language we want to allow that the type
of the Expression need not match exactly the type required for the Argument as specified
in the signature of the function. As in assignments it shall be allowed that the expression
yields a value of type real which then is converted to an int value if required by the
function signature, e.g. in £(3.4).

Hence, we use a ConversionContext which allowes to connect the Argument via an operator
with the Expression node. The indication assignOpr is specified for this context. It states
that the same conversion operators as in assignments (i.e. rToi) and all coercion operators

32 Tutorial on Type Analysis

(i.e. iTor) may be used to convert the result of the Expression to the type of the Argument,
if necessary:

Arguments[98]==

RULE: Argument ::= Expression COMPUTE
ConversionContext (Argument, , Expression);
Indication (assignOpr);

END;

This macro is invoked in definition 100.

A return statement refers to the immediately enclosing function declaration. It has to be
checked that a value of a type is returned that is compatible to the result type, if the latter
is not void. A return from the outermost program level is considered as if the program was
a void function. Conversions that are additionally applicable are specified in the same way
as in the Argument context above.

The attribute value Function.ResultType stems from the context of a type denotation.
Hence, its value may not be used directly in a compare with a type key as voidType. The
function FinalType has to access the related type key, and the precondition INCLUDING
Program.TypelIsSet has to be stated.

Return statements[99]==
ATTR ResultType: DefTableKey;

RULE: Statement ::= ’return’ Expression ’;’ COMPUTE
RootContext (
INCLUDING (Function.ResultType, Program.ResultType), , Expression);
Indication (assignOpr);
END;

RULE: Statement ::= ’return’ ’;’ COMPUTE
IF (NOT (EQ (voidType,
FinalType (
INCLUDING (Function.ResultType,
Program.ResultType)))),
message (ERROR, "return value required", 0, COORDREF))
<- INCLUDING Program.TypeIsSet;
END;

SYMBOL Program COMPUTE
SYNT.ResultType = voidType;

END;

RULE: Function ::= FunctionHead Block COMPUTE
Function.ResultType = FunctionHead.ResultType;

END;

RULE: FunctionHead ::= ’(’ Parameters ’)’ TypeDenoter COMPUTE

FunctionHead.ResultType = TypeDenoter.Type;
END;

Chapter 8: Functions

This macro is invoked in definition 100.
Function.lido[100]==

Abstract function syntax[91]

Abstract call syntax[96]

Function declaration types[93]

Function range[92]

Function typel[94]

Function signature[95]

Call types[97]

Arguments[98]

Return statements[99]

This macro is attached to a product file.
Function.con[101]==

Function declaration syntax[140]
Call syntax[141]

This macro is attached to a product file.

33

Chapter 9: Type Definitions 35

9 Type Definitions

This chapter introduces type definitions to the language. A name can be defined for any
TypeDenoter and can be used to denote that type.

Here is an example program with type definitions. It makes use of the facility that identifiers
may be defined after their uses:

TypedefExamp|[102]==

begin
var tt rv;
type t tt;

type record int i, bool b, real r end t;
var int j, bool c, real s;
var t rt;

j = rv.i;
= rv.b;
= rv.r;

rt = rv;

end

This macro is attached to a product file.
The following productions are added to the grammar:
Abstract type declaration syntaz[103]==
RULE: Declaration ::= ’type’ TypeDenoter TypeDefldent ’;’ END;

RULE: TypeDefldent ::= Ident END;
RULE: TypeDenoter ::= TypeUseldent END;
RULE: TypeUseldent = Ident END;

This macro is invoked in definition 113.

A type definition introduces a new name for a type given by the TypeDenoter. We distin-
guish between defining occurrences TypeDefIdent used occurrences TypeUseIdent of type
names.

In our language we specify that a type definition does not introduce a new type, rather
it introduces another name for a type. Hence, there may be many different names for the
same type. Furthermore, even two TypeDenoter that differ in certain aspects may denote
the same type. This view can be supported by the roles of the StructEquiv module: For
each kind of types it is stated which of its properties distinguish two types of that kind (see
record types or array types).

Hence, in the following specification we only have to characterize a defining occurrence of a
type identifier by the corresponding roles of the name analysis module and those for a defin-
ing occurrence of a type identifier (TypeDefDefId, ChkTypeDefDefId). In the Declaration
context the Type attribute is just passed from the TypeDenoter to the TypeDefIdent.

Type declaration computation][104]==

SYMBOL TypeDefIdent INHERITS
ChkUnique, IdDefScope, IdentOcc,
TypeDefDefId, ChkTypeDefDefld

36 Tutorial on Type Analysis

END;

RULE: Declaration ::
TypeDefldent.Type
END;

This macro is invoked in definition 113.

’type’ TypeDenoter TypeDefldent ’;’ COMPUTE
TypeDenoter.Type;

Used occurrences of type identifiers are characterized by the module roles TypeDefUseId
and ChkTypeDefUseId, and by the roles that characterize used indentifier occurrences of
any kind:
Used type identifiers[105]==
SYMBOL TypeUseIdent INHERITS
IdUseEnv, IdentOcc, ChkIdUse,
TypeDefUseId, ChkTypeDefUseld END;

RULE: TypeDenoter ::= TypeUseldent COMPUTE
TypeDenoter.Type = TypeUseldent.Type;
END;

This macro is invoked in definition 113.

A language that has facilities to define names for types and allows identifier uses before
their definitions, opens the possibility to define types recursively, e.g.

type record int i, rt x end rt;

In many languages such a type rt would be disallowed, because a value of type rt may
not contain another value of the same type. However, if the type of the component x was
defined to be pointer to rt instead of rt, then a useful list type would be defined.

This example illustrates that the existence of type definitions may cause the need to specify
which recursive type definitions are considered legal for a certain language. In our language,
as defined so far, any recursion in a type definition is considered to be disallowed. However,
the situation changes when there are types, like pointer types, such that that recursion is
allowed when it passes through such a type.

Hence, we introduce three properties: IsRecursiveType, IsNotRecursiveType indicates
whether a type is illegally recursive. AllowRecurType indicates that recursion through such
a type is allowed. The latter will be set when such types are introduced, i.e. in the chapter
on pointer types: Check recursive types properties[106]|==

IsRecursiveType: int;

IsNotRecursiveType: int;

AllowRecurType: int;

This macro is invoked in definition 112.
Such a check is performed by a function ChkRecursiveType which is applied to a type t
and recursively walks through the component types of t. If it reaches t again (without
having passed through a type that allows recursion), the type is indicated to be illegally
recursive.
Check for recursive types[107]==

SYMBOL TypeDefIdent COMPUTE
IF (ChkRecursiveType (THIS.Type),

Chapter 9: Type Definitions 37

message (ERROR, CatStrInd ("Recursively defined type: ",
THIS.Sym),
0, COORDREF))
<- INCLUDING Program.GotAllTypes;
END;
This macro is invoked in definition 113.

The implementation of the type walk algorithm uses a property that indicates whether a
type is currently visited by the algorithm: Visiting property[108]==

Visiting: int;

This macro is invoked in definition 112.
The following C module implements an algorithm that walks recursively through the com-
ponents of a type to check whether the type is defined illegally recursively.

RecTypeChk.head[109]==
#include "RecTypeChk.h"

This macro is attached to a product file.

RecTypeChk.h[110]==

#include "deftbl.h"
extern int ChkRecursiveType (DefTableKey tp);

This macro is attached to a product file.
RecTypeChk.c[111]==

#include "pdl_gen.h"
#include "StructEquiv.h"
#include "Typing.h"

#ifdef TEST
#define TEST 1
#include <stdio.h>
#endif

static DefTableKey origType;

int VisitCompOfType (DefTableKey node, DefTableKey component)
/* This is the function used by the type walk that checks
for recursive types. It is called for every visit from a type node
to one of its components. 5 cases are distinguished, as explained below:|]
*/
{
#ifdef TEST
printf ("visit at %s (%d) component %s (%d)\n",
GetTypeName (node, "no name"),
GetTypeLine (node, 0),
GetTypeName (component, '"no name"),
GetTypeLine (component, 0));
#endif

Tutorial on Type Analysis

if (GetAllowRecurType (component, 0))
/* do not visit a component type that allows recursion */
return 1;

else {
if (FinalType (component) == FinalType (origType)) {

/* the type under investigation contains itself on a path
that does not lead through a type which allows for
recursion

*/

ResetIsRecursiveType (origType, 1);

ResetIsRecursiveType (component, 1);

return 2; /* terminate walk */

if (GetIsRecursiveType (component, 0)) {
/* The component type of the node is already
recognized to be recursive

ResetIsRecursiveType (origType, 1);
return 2; /* terminate walk */

if (GetVisiting (component, 0)) {
/* This component lies on a non-pointer cycle
not involving the original type under investigation
*/
ResetIsRecursiveType (origType, 1);
ResetIsRecursiveType (component, 1);
return 2; /* terminate walk */

}
}
return O; /* visit this component */
}
int RecWalkType (DefTableKey currType)
/*
Every direct or indirect component type of tp is visited, unless
the call VisitCompOfType (curr, comp) shortcuts the walk.
If it returns
0: comp is visited
1: comp is skipped
2: the walk is terminated
*/

{ DefTableKeyList compseq;
DefTableKey compType;
int visitRes;
currType = FinalType (currType);

/* Do not visit a node, that is currently visited: */

Chapter 9: Type Definitions 39

if (GetVisiting (currType, 0)) return 1;
ResetVisiting (currType, 1);

/* consider all component types: */
for (compseq = GetComponentTypes (currType, NULLDefTableKeyList);
compseq != NULLDefTableKeyList;
compseq = TailDefTableKeyList (compseq)) {
compType = FinalType (HeadDefTableKeyList (compseq));

/* Skip non-type: */
if (compType == NoKey) continue;

/* Visit this component: */
visitRes = VisitCompOfType (currType, compType);

/* The component visit indicates how to continue: */
switch (visitRes) {
case 0: /* dive into the component */
if (RecWalkType (compType)) {
/* the type walk is to be terminated */
visitRes = 2;
goto ret;
3
break;
case 1: /* do not dive into the component */
break;
case 2: /* terminate the walk */
visitRes = 2;
goto ret;
default:;
}
/* iteration of components continues */
}
visitRes = 0; /* components elaborated */
ret:
ResetVisiting (currType, 0);
return visitRes;

by

int ChkRecursiveType (DefTableKey tp)
/* on entry:
The results of the type equivalence analysis must be computed and
stored in the type data base.
tp represents a type.
method:
A walk through the type structure of tp is initiated,

40 Tutorial on Type Analysis

and then executed.
VisitCompOfType (curr, comp) is called whenever
a direct component comp of the type curr is visited.
origType stores the type for which the recursion check is initiated.|]
Every type that is found to be illegally recursive is marked by
the property IsRecursiveType. It is also used to shortcut
the walk through the type structure.
on exit:
1 is returned if the type tp directly or indirectly
has tp as a component type, and the path to it is not
legal for recursion
0 is returned otherwise.
*/
{
tp = FinalType (tp);
origType = tp;
if (GetIsRecursiveType (tp, 0)) return 1;
if (GetIsNotRecursiveType (tp, 0)) return 0;

/* the result is not yet known: */
RecWalkType (tp);

return GetIsRecursiveType (tp, 0);
}

This macro is attached to a product file.
TypeDef.pdl[112]==

Check recursive types properties[106]

Visiting property[108]

This macro is attached to a product file.
TypeDef.lido[113]==

Abstract type declaration syntax[103]

Type declaration computation[104]

Used type identifiers[105]

Check for recursive types[107]

This macro is attached to a product file.

Chapter 10: Pointer Types 41

10 Pointer Types

In this chapter we introduce pointer types to our language. The notation t ! denotes a
type for values that point to values of type t.

A new Variable notation is introduced: In v ! the dereferencing operator ! is applied to
the variable v, which must have a pointer type. The result of the operation is the value
that v points to.

A pointer value of type t ! is created by execution of a generator new t, where t is a type
denotation.

Here is an example program that uses these pointer constructs in different contexts
PointerExamp[114]|==
begin

var int k;

var int! pi, int! pj;

var record int i, bool b, real! r end! rv;

type record int x, t! next end t;

var t 1;

pi = new int;

pi! = 1;

pi = pj;

pi! = pj';
rv!.b = true;
rv!.r! = 3.2;

l.next!.x = 1;
l.next = nil;
end
This macro is attached to a product file.

The following productions are added to the grammar:

Abstract pointer syntax[115]==

RULE: TypeDenoter ::= PointerType END;

RULE: PointerType ::= TypeDenoter ’!’ END;
RULE: Variable ::= Variable ’!’ END;
RULE: Expression ::= ’nil’ END;

RULE: Expression ::= Generator END;

RULE: Generator ::= ’new’ TypeDenoter END;

This macro is invoked in definition 125.

There are two constructs which introduce a pointer type. The first one is a denoter for a
pointer type. Two monadic operators are created for each pointer type: One is applied to
a pointer and yields the value pointed to, the other yields the reference of an entity instead
of its value. The dereferencing operators of all pointer types are overloaded on the indi-
cation DerefOpr, correspondingly all operators that prevent dereferencing are overloaded
on the indication RefOpr. We also introduce an artificial type for the nil symbol: Pointer
operators[116]==

42 Tutorial on Type Analysis

Deref0Opr;

RefOpr;

NilOpr;

nilType -> IsType = {1};

This macro is invoked in definition 124.
Creating these pairs of operators for a pointer type establishes the condition
PointerType.GotOper, which is a precondition for operator identification. Furthermore,
we state that the type of the nil symbol is coercible to each pointer type.

Pointer type denotation[117]|==

RULE: TypeDenoter ::= PointerType COMPUTE
TypeDenoter.Type = PointerType.Type;
END;

SYMBOL PointerType INHERITS TypeDenotation, OperatorDefs END;

RULE: PointerType ::= TypeDenoter ’!’ COMPUTE
PointerType.GotOper +=
ORDER
(Coercible (NilOpr, nilType, PointerType.Type),
MonadicOperator
(DerefOpr, NewKey(), PointerType.Type, TypeDenoter.Type),
MonadicOperator
(RefOpr, NewKey(), TypeDenoter.Type, PointerType.Type));
END;
RULE: Expression ::= ’nil’ COMPUTE
PrimaryContext (Expression, nilType);
END;

This macro is invoked in definition 125.

A generator also introduces a pointer type. The TypeDenoter states which is the type
pointed to. Generators may occur as operand in expressions:

Generator[118]==
SYMBOL Generator INHERITS TypeDenotation, OperatorDefs END;

RULE: Generator ::= ’new’ TypeDenoter COMPUTE
Generator.GotOper +=
ORDER (
MonadicOperator
(DerefOpr, NewKey(), Generator.Type, TypeDenoter.Type),
MonadicOperator
(RefOpr, NewKey(), TypeDenoter.Type, Generator.Type));
END;
RULE: Expression ::= Generator COMPUTE

PrimaryContext (Expression, Generator.Type);
END;

Chapter 10: Pointer Types 43

This macro is invoked in definition 125.

Types t !, s ! and the types created by new t and new s are all considered to be equivalent
in our language, if the types s and t are equivalent, with respect to renaming and to
equivalence rules for the particular type categories.

We use the facilities of the StructEquiv module to specify such structural type equiva-
lence for pointer types. In particular two conditions are specified for types a and b to
be equivalent: Both have to be of the kind PointerClass, and their sequences of com-
ponent types have to be elementwise equivalent, in this case the single type pointed to:
EqualPtrTypes.lido[119]==

RULE: PointerType ::= TypeDenoter ’!’ COMPUTE
PointerType.GotType =
AddTypeToBlock
(PointerType.Type, PointerClass,
VResetComponentTypes

(PointerType.Type, SingleDefTableKeyList (TypeDenoter.Type)))
<- .moreTypeProperies;
END;

RULE: Generator ::= ’new’ TypeDenoter COMPUTE
Generator.GotType =
AddTypeToBlock
(Generator.Type, PointerClass,
VResetComponentTypes
(Generator.Type, SingleDefTableKeyList (TypeDenoter.Type)))
<- .moreTypeProperies;
END;
This macro is attached to a product file.
The PointerClass is a unique key used to distinguish this kind of types from other kinds,
e.g. array types:

Pointer type equality[120]==
PointerClass;

This macro is invoked in definition 124.

Pointer types are to be treated especially when types are checked for equivalence: On the
one hand, a type is allowed to be recursively defined if the recursion goes through a pointer
component, for example in type record int i, rec! p end rec;. That is why we associate
the property AllowRecurType to the pointer type, together with the properties defining the
output for types.

Pointer types allow recursion[121]==

RULE: PointerType ::= TypeDenoter ’!’ COMPUTE
.moreTypeProperies =
ORDER
(ResetTypeName (PointerType.Type, "pointer..."),
ResetTypeline (PointerType.Type, LINE),
ResetAllowRecurType (PointerType.Type, 1));
END;

44 Tutorial on Type Analysis

RULE: Generator ::= ’new’ TypeDenoter COMPUTE
.moreTypeProperies =
ORDER
(ResetTypeName (Generator.Type, "pointer..."),
ResetTypelLine (Generator.Type, LINE),
ResetAllowRecurType (Generator.Type, 1));
END;
This macro is invoked in definition 125.

On the other hand, we have to check that pointer types are not defined directly recursively,
or indirectly recursively s.t. only pointer types are involved:

type pl! pil;
type p2! p3;
type p3! p2;

In the example above all three type are pairwise equivalent.
Recursion check for pointer types[122]==

RULE: PointerType ::= TypeDenoter ’!’ COMPUTE
IF (EQ (FinalType (PointerType.Type), FinalType (TypeDenoter.Type)),
message (ERROR, "Recursively defined pointer type",
0, COORDREF))
<- INCLUDING Program.TypelsSet;
END;
This macro is invoked in definition 125.

For the dereferencing operation applied to a Variable we specify that in the following
context a suitable operator that overloads the DerefOpr indication is applicable:

Pointer variable[123]==

RULE: Variable ::= Variable ’!’ COMPUTE
MonadicContext (Variable[1], , Variable[2]);
Indication (DerefOpr);

IF (BadOperator,
message (ERROR, "Dereferencing not allowed", O, COORDREF));

END;

This macro is invoked in definition 125.
Pointer.pdl[124]==

Pointer type equality[120]

Pointer operators[116]

This macro is attached to a product file.
Pointer.lido[125]==

Abstract pointer syntax[115]

Pointer type denotation[117]

Generator[118]

Pointer types allow recursion[121]

Recursion check for pointer types[122]

Pointer variable[123]

Chapter 10: Pointer Types

This macro is attached to a product file.

Pointer.con[126]==

Concrete pointer syntax[143]

This macro is attached to a product file.

45

Chapter 11: Function Types 47

11 Function Types

We finally extend our language towards the orthogonal use of functions, i.e. wherever a
typed entity is allowed it can have a function type. In particular, evaluation of an expression
may yield a function, which may be called, assigned to a variable, passed as an argument, or
returned as a function result. For that purpose it is sufficient to add another TypeDenoter
which denotes function types. New notations for expressions are not needed.

Here is an example program that defines a function type and a higher order function:
FctTypeExamp[127]==
begin
fun mul (int x, real y) real
begin return x * y; end;

fun add (int x, real y) real
begin return x + y; end;

type (int, real -> real) fct;

fun apply2 (real z, fct ff) real
begin return ff (2, z); end;

var real r;

r = apply2 (3.1, add);
r = apply2 (3.1, mul);
end

This macro is attached to a product file.
The following productions are added to the grammer:

Abstract function type syntar[128]==

RULE: TypeDenoter ::= FunctionType END;

RULE: FunctionType ::= >(’ ParamTypes ’->’ TypeDenoter ’)’ END;
RULE: ParamTypes LISTOF ParamType END;

RULE: ParamType ti= TypeDenoter END;

This macro is invoked in definition 133.

The specifications for FunctionTypes exactly correspond to those for FunctionHeads in the
context of function declarations. An Operator is created, that has a signature as given by
the types of the parameters and of the result:

Function type denotation[129]==

RULE: TypeDenoter ::= FunctionType COMPUTE
TypeDenoter.Type = FunctionType.Type;
END;

SYMBOL FunctionType INHERITS TypeDenotation, OperatorDefs END;

RULE: FunctionType ::= ’(° ParamTypes ’->’ TypeDenoter ’)’ COMPUTE

48 Tutorial on Type Analysis

FunctionType.GotOper +=
ListOperator (
FunctionType.Type,
FunctionType.Type,
ParamTypes.OpndTypelList,
TypeDenoter.Type) ;

.moreTypeProperies =
ORDER
(ResetTypeName (FunctionType.Type, "function..."),
ResetTypeLine (FunctionType.Type, LINE));
END;
This macro is invoked in definition 133.
The introduction of function types to our language allows programs to use values which
represent functions. They have a function type which must fit to the type required in the
context. For example, the apply2 (3.1, add) passes the function add as an argument of
the called function apply2. Hence, the type of the declared function add must be equivalent
to the type required for the second parameter of apply2 (or coercible under type rules for
parameter, as specified in the chapter on functions).

In this case we have to specify structural equivalence of function types, in oder to let the type
rules allow such uses of functions. If we would specify name equivalence instead, then for
the above example, the signature of the function declaration and the type fct specified for
the second parameter of apply?2 are different notations of types. They would be considered
not to be name equivalent; but, they are structural equivalent.

Structural type equivalence is specified for denotations of function types that either occur
in a type denotation or as the signature of a declared function. We state that two types
a and b are equivalent if both have the kind FunctionClass, and the component types,
which are the types of the parameters and of the result, are elementwise equivalent:

Function type equivalence[130]==

RULE: FunctionHead ::= ’(’ Parameters ’)’ TypeDenoter COMPUTE
FunctionHead.GotType =
ORDER (
AddTypeToBlock (

FunctionHead.Type, FunctionClass,
VResetComponentTypes

(FunctionHead. Type,

ConsDefTableKeyList

(TypeDenoter.Type, Parameters.OpndTypeList))),

ResetTypeName (FunctionHead.Type, "function..."),
ResetTypelLine (FunctionHead.Type, LINE));

END;
RULE: FunctionType ::= ’(’ ParamTypes ’->’ TypeDenoter ’)’ COMPUTE
FunctionType.GotType =

AddTypeToBlock
(FunctionType.Type, FunctionClass,

Chapter 11: Function Types 49

VResetComponentTypes
(FunctionType.Type,
ConsDefTableKeyList
(TypeDenoter.Type, ParamTypes.OpndTypelList)))
<- .moreTypeProperies;
END;

SYMBOL ParamTypes INHERITS OpndTypeListRoot END;
SYMBOL ParamType INHERITS OpndTypelListElem END;

RULE: ParamType ::= TypeDenoter COMPUTE
ParamType.Type = TypeDenoter.Type;
END;

This macro is invoked in definition 133.
Function class[131]==

FunctionClass;

This macro is invoked in definition 132.
We require for our language, that a function type £ may not directly or indirectly have a
component type £, unless the recursion passes through a pointer type. The check is specified
in the context of type definitions.
FunctionType.pdl[132]==

Function class[131]

This macro is attached to a product file.
FunctionType.lido[133]==

Abstract function type syntax[128]
Function type denotation[129]
Function type equivalence[130]

This macro is attached to a product file.
FunctionType.con[134]==
Function type syntax[142]

This macro is attached to a product file.

Chapter 12: Appendix: Syntax 51

12 Appendix: Syntax

12.1 Concrete Kernel Syntax
Concrete Kernel syntax[135]==

Declarations: Declarationx.
Declaration: ’var’ 0ObjDecls ’;’.
ObjDecls: [ObjDecl // 7,’].
Statements: Statementx*.
Expression: Factor.

Factor: Operand.

Operand: IntNumber.
Operand: RealNumber.
Operand: ’true’.

Operand: ’false’.

Operand: Variable.

This macro is invoked in definition 18.

The expression syntax is prepared to introduce operators of different precedences (2 for
binary and 1 for unary operators).

Factor and Operand are represented by Expression contexts in the tree grammar
Ezpression mapping[136]==
Expression ::= Factor Operand.
This macro is invoked in definition 19.
The notation of identifiers, numbers, and comments is chosen as in Pascal:
Token notation[137]|==

Ident: PASCAL_IDENTIFIER
IntNumber: PASCAL_INTEGER
RealNumber: PASCAL_REAL

PASCAL_COMMENT

This macro is invoked in definition 17.

12.2 Concrete Expression Syntax

Ezxpression syntax[138]==

Expression: Expression AddOpr Factor.
Factor: Factor MulOpr Operand.
Operand: MonOpr Operand.

Operand: >(’ Expression ’)’.
AddOpr: VRSN

MulOpr: E LVARVAN

MonOpr: VAR VA L

This macro is invoked in definition 32.

The following specification unifies the binary operators that have different precedences into
one symbol class BinOpr of the abstract syntax.

52 Tutorial on Type Analysis

Operators[139]|==
BinOpr ::= AddOpr MulOpr.
UnOpr ::= MonOpr.

This macro is invoked in definition 33.

12.3 Concrete Function Syntax

Function declaration syntax[140]==
Parameters: [Parameter // ’,’].
This macro is invoked in definition 101.
Call syntar[141]==
Arguments: [Argument // ’,’].
This macro is invoked in definition 101.
Function type syntaz[142]==
ParamTypes: [ParamType // ’,’].

This macro is invoked in definition 134.

12.4 Other concrete productions

Concrete pointer syntax[143]==

Operand: ’nil’.

This macro is invoked in definition 126.
Concrete notations are stated for the comma separated sequence of type denoters. The spe-
cific precedence of the cast expression and its parentheses avoid a parsing conflict. Concrete
union syntaz[l44]==

UnitedTypes: UnitedTypes ’,’ UnitedType.

UnitedTypes: UnitedType.

Operand: ’<’ TypeDenoter ’>’ Operand.

This macro is invoked in definition 89.

	Kernel Language
	Basic Scope Rules
	Types in the Kernel Language

	Type Checking in Expressions
	Operator Overloading
	Type Conversion
	Record Types
	Type Equivalence
	Qualified Names

	Array Types
	Union Types
	Functions
	Type Definitions
	Pointer Types
	Function Types
	Appendix: Syntax
	Concrete Kernel Syntax
	Concrete Expression Syntax
	Concrete Function Syntax
	Other concrete productions

