Eli User Interface Reference Manual

$Revision: 2.5 $

Compiler Tools Group
Department of Electrical and Computer Engineering
University of Colorado
Boulder, CO, USA
80309-0425

Table of Contents

1 Referring to Objects............................ 3
1.1 Lexical Conventionsottt 3
1.2 Selection EXpPressions.c.oouuiiiiiiiiiiiiiiiinn.. 3
1.3 Derivation ExXpressionsccoooiiiiiiiiiiiiiiiiiiaaa... 4
1.4 Parameterization Expressions............. ..., 4

2 Bringing Objects Up To Date 7
2.1 Status of Objects.o 7
2.2 Error and Warning MeSSagesoovrtireeeeenniiiiiinnn.. 7

3 Extracting and Editing Objects 9
3.1 Copying to Standard OQutputcoviiiiieiiiiieennn... 9
3.2 Editing with the Copy Command............................... 9

4 Execute Commands........................... 11

5 The Odinfile 13

6 The Command Editing Mechanism 15

7 Variables 17
(/4% S I 5 17
7.2 BuildHosts, MaxBuilds..............o i 18
7.3 KeepGoing. . ..oouuiii i 18
T4 HiStOry .o 18
7.5 ErrLevel, WarnLevel, Loglevel 18
7.6 HelpLevel. 18
T.7 VerifyLevel.o 18
A T 577 < W P 19
7.9 Environment Variables......... ... i 19

8 The Help Facility.............................. 21
8.1 Source Type Help..... ..o 21
8.2 Derivation Help ... 22
8.3 Parameterization Help ... i 23
8.4 Variable Help ... 23

Eli focuses a user’s attention on the information required to specify a text processor,
rather than the tools implementing it, by automating the process of tool invocation. Desired
products, such as an executable program or the result of a test run, are regarded as derived
objects. Eli responds to a request for a derived object by invoking the minimum number of
tools necessary to produce that object. Derived objects are automatically stored for re-use
in future derivations, thereby significantly shortening the time required to satisfy requests.

This document is a reference manual for the general mechanisms by which a user can
describe objects, make requests, and tailor Eli’s behavior. For suggestions on using Eli to
carry out specific tasks, see Section “Example” in Guide for New Eli Users; for a complete
list of the kinds of objects that can be derived, see Products and Parameters.

Although our primary emphasis here is on interactive use of Eli, all of the material except
command line editing and the interactive help facility also applies to non-interactive use.
The description of the Odinfile (see Chapter 5 [Odinfile], page 13) is particularly important
in that context.

Chapter 1: Referring to Objects 3

1 Referring to Objects

The objects in Eli’s universe are divided into two classes, source objects and derived objects.
Source objects are owned by the user of Eli, and may be manipulated in any way. Derived
objects are owned by Eli; the user may inspect them or obtain copies of them on request,
but has no direct access to them and cannot change them. Each derived object can be
manufactured from some set of source objects, and therefore does not represent any new
information.

Every object has a name. The name of a source object is its Unix file name and the
name of a derived object is an odin-expression. The remainder of this chapter explains the
form and meaning of an odin-expression.

Eli splits each file name into two parts: a root and a type-name. The type-name is the
longest suffix of the file name that matches one of the declared source type suffixes. If no
suffix match is found, the type-name is the empty string.

1.1 Lexical Conventions

Lexically, an odin-expression consists of a sequence of identifier and operator tokens ter-
minated by a newline character. An odin-expression can be continued on multiple lines by
escaping each newline character with a backslash. This backslash (but not the newline) is
deleted before the expression is parsed. Multiple odin-expressions can be specified on the
same line by separating them with semicolons.

An identifier token is just a sequence of characters. The following characters must be
escaped to be included in an identifier:

:+=()/%; 7% <> ! <space> <tab> <newline> # \ ’

A single character can be escaped by preceding it with a backslash (e.g. lost\+found). A se-
quence of characters can be escaped by enclosing them in apostrophes (e.g. ’lost+found’).

Unescaped white space characters (spaces, tabs, and newlines) are ignored during parsing
except when they separate adjacent identifiers. A comment begins with a sharp and is
terminated by the next newline character:

this is a comment
Each comment is equivalent to white space.

An odin-expression can be surrounded by parentheses. Parentheses are required for
nested odin-expressions (such as values of parameters) or for the empty expression () which
represents an immutable empty file.

1.2 Selection Expressions

A selection expression, indicated by the slash operator, selects a file from a directory. The
argument to the slash operator is the file name of the desired file. For example, the following
odin-expression selects prog.c from the directory src:

src/prog.c

Any special character must be escaped. For example, src/c++/prog.c must be escaped,
as in src/c\+\+/prog.c or ’src/c++/prog.c’.

4 Eli User Interface Reference Manual

1.3 Derivation Expressions

A derivation expression, indicated by the colon operator, is used to specify a derived object.
The argument to the colon operator is an object type (or product) (see Products and
Parameters):

sets.specs :exe
sets.specs :source :names

The first line names the executable program derived from the specifications enumerated in
file ‘sets.specs’, while the second names a text file containing the names of the C files,
header files and Makefile from which that program can be built.

A derived object can be a directory, in which case it is called a derived directory. Ele-
ments of a derived directory are selected with the same slash operator used to select elements
of source directories. For example, if examples/sets.specs:source is a derived directory
containing the source code files that implement a text processor, and this directory contains
three files named ‘Makefile’, ‘driver.c’, and ‘HEAD.h’, then these three files are named by
the odin-expressions:

examples/sets.specs:source/Makefile
examples/sets.specs:source/driver.c
examples/sets.specs:source/HEAD.h

1.4 Parameterization Expressions

A parameterization expression, indicated by the + operator, extends an object with addi-
tional information that affects the derived objects produced from that object. The argument
to the + operator is a parameter type (see Products and Parameters), optionally followed
by an = operator and a value consisting of a sequence of one or more identifiers and paren-
thesized odin-expressions:

test +cmd=(sets.specs +fold :exe) +cmd=data :run

test +cmd=(sets.specs +fold :exe) data :run

test +cmd=(sets.specs +fold=’ ’ :exe) data :run

test +cmd=(sets.specs +fold :exe) +cmd=data +cmd=data :run

(We shall see that all of these lines are equivalent.)

If the parameter value is omitted, it is equivalent to specifying the identifier consisting
of a single space ’> ’ as the value.

The parameter values of a given parameter type in an odin-expression form an ordered
set, where the order of the values is the order specified in the odin-expression. If multiple
copies of the same parameter value appear, only the first of the multiple copies is kept. The
parameter value lists of each parameter type are disjoint, therefore, the order of parameters
of different types is not significant.

If a parameter has a value that is a sequence, that value is only considered the same as
another identical sequence. Thus the following odin-expression is not equivalent to those
given above:

test +cmd=(sets.specs +fold :exe) data +cmd=data :run

Although data is an element of the parameter value list for parameter type cmd, it was
introduced as part of a sequence. Its second appearance is as a single value, which is not

Chapter 1: Referring to Objects 5

equivalent to the previous sequence. Therefore it will not be considered a duplicate element,
and the final list will be (sets.specs +fold :exe) data data.

Frequently, several odin-expressions share a common set of parameters. To support
this kind of sharing, a parameterization expression can take the form of a + followed by a
parenthesized odin-expression. The common set of parameters are then stored in the file
named by the odin-expression. For example, suppose the file ‘my.prms’ contained the text:

+debug +1lib_sp=(/local/lib) +monitor +fold
The odin-expression my.prms denotes the file ‘my.prms’ in the current directory, so the
following odin-expressions would be equivalent:

sets.specs +(my.prms) :exe

sets.specs +debug +1lib_sp=(/local/lib) +monitor +fold :exe

Chapter 2: Bringing Objects Up To Date 7

2 Bringing Objects Up To Date

A command consisting simply of an odin-expression requests Eli to bring the object named
by the odin-expression up to date and report information (such as error and warning mes-
sages produced by tool steps that were run) concerning the object’s status. The level of
detail of this information is controlled by the value of the ErrLevel and WarnLevel variables
(see Section 7.5 [ErrLevel|, page 18).

2.1 Status of Objects

Associated with each object is a status level, where the status level is one of OK, WARNING,
ERROR, CIRCULAR, NOFILE, and ABORT. OK is the maximum status level and ABORT the
minimum.

The status of a given derived object depends on the results of the tools that produced
that object. If any tool generated warning messages, the status level of the given object is
at most WARNING. If any tool generated error messages, the status level of the given object
is at most ERROR. If an object that was needed to create the given object is the object itself,
the status level of the given object is at most CIRCULAR. If any object that was needed
to generate the given object did not exist, the status level of the given object is at most
NOFILE. If any object that was needed to generate the given object had status level ERROR
or less, then the status level of the given object is set to be ABORT.

The status of a source object is NOFILE if the host file does not exist, the status of the
value of its target value (see Chapter 5 [Odinfile], page 13) if it is a target, and otherwise
OK.

2.2 Error and Warning Messages

The warning or error messages produced by all tool invocations are saved by Eli. The
difference between an error and a warning is that an error prevents the tool from generating
its output, while a warning indicates that although output was generated, it might be faulty.
An example of an error message from a loader is:

Unsatisfied external reference: "procl".
An example of a warning message from a loader is:
Multiply defined extermnal: "proc2", first copy loaded.
A text file containing a summary of all error messages for an object can be obtained by
applying the :err derivation to the object:
prog.c :exe :err
Here file prog.c:exe:err contains a summary of all error messages produced by any tool

used in the generation of the prog.c:exe object. The :warn derivation produces a text file
containing both warning and error messages for an object.

The :err and :warn derivations show the error reports just as they are produced by
the tools. Eli’s error derivation relates error messages to the source files causing them,
and :warning does the same for both error and warning messages. Still more sophisticated
anlysis is provided by the :help derivation, which starts a browsing session that links the
errors to documentation and also makes the appropriate files available to the editor. These
derivations have the same form as the derivations yielding the raw reports:

Eli User Interface Reference Manual

prog.c :exe :error
prog.c :exe :warning
prog.c :exe :help

Chapter 3: Extracting and Editing Objects 9

3 Extracting and Editing Objects

A command that includes an angle bracket (> or <) requests Eli to copy the contents of a
specified object into another object. The copy is performed only if the status level of the
specified object is no lower than WARNING (see Section 2.1 [Status|, page 7). The destination

of the copy must be a source object, because only source objects can be directly modified
by a user.

There are two forms of the copy odin-command: copy-to, indicated by a right-angle-
bracket >, and copy-from, indicated by a left-angle-bracket <. Examples of these two odin-
commands are:

-> sets.specs +debug :exe > prog
-> prog < sets.specs +debug :exe
If the destination object is a directory, the label of the specified object is used to name
the new copy. The label of a source file is the last component of the pathname of the
source file. The label of a derived object is source-label.type-name where type-name is
the name of the output type of the tool that produced it (see Products and Parameters)
and source-label is the label of the source file from which it is derived. For example, the
label of /usr/src/sets.specs is sets.specs and the label of /usr/src/sets.specs:exe
is sets.specs.exe.

If a list is copied into a directory, each element of the list is copied individually into the
directory.

3.1 Copying to Standard Output
If the destination object is omitted from a copy-to odin-command, the specified object is
displayed on the current standard output device. For example, the odin-command:

-> sets.con >

displays the file named sets. con.

3.2 Editing with the Copy Command

If only the destination object is specified in a copy-from odin-command, the specified ob-
ject is given to the host-system editor indicated by the $EDITOR environment variable (see
Section 7.9 [Environment Variables|, page 19) with the vi editor the default. For example,
if the value of the $EDITOR variable is emacs, then the following odin-command invokes the
emacs editor on the file prog.c.

-> prog.c <

Chapter 4: Execute Commands 11

4 Execute Commands

A command that includes an exclamation point (!) requests Eli to execute a host com-
mand. In its most general form, such a command consists of an odin-expression followed
by an exclamation-point and a host-command line. Either the odin-expression or the host-
command can be omitted:

-> input +cmd=(sets.specs:exe) :stdout !more -s
-> 1 1s *.c

-> build.specs :exe !

—-> commands !

The result of the command is to bring the object named by the odin-expression up to
date, append its filename to the host-command line, and give the resulting extended host-
command line to the host system for execution.

If the host-command is omitted, the object itself is executed. If execute permission is set
for the object, it is given to the host operating system for execution; otherwise, the object
is assumed to contain eli commands that are executed by the interpreter.

The exclamation-point has the special lexical property that if the first non-white space
character following it is not a colon, a semicolon, or an equal sign, then the rest of the line is
treated as a single escaped sequence of characters. This avoids the confusion resulting from
interactions between host-command and Eli character escape conventions. A leading colon,
equal sign, or white space character can be included in the escaped sequence of characters
by preceding it with a backslash.

Chapter 5: The Odinfile 13

5 The Odinfile

Eli consults file ‘Odinfile’ in the current directory for information about the task at hand.
‘Odinfile’ is used to define one or more targets. Most targets define some product that
can be requested, using the notation target == odin-expression. Here are examples of the
three common kinds of target:

mkhdr == sets.specs :exe
mkhdr is a file target. This line specifies that mkhdr should always be equal to
the derived file object sets.specs :exe. If the command eli mkhdr is given
in a directory with a file ‘Odinfile’ containing this line, it will result in a non-
interactive Eli session guaranteeing that file mkhdr in this directory is up to
date. (The same effect can be obtained in an interactive session by responding
to the -> prompt with mkhdr.)

Jresults == input +cmd=(mkhdr) :stdout

%hresults is a virtual target. A virtual target is simply a name for an odin-
expression, and can be used wherever and odin-expression is required. If the
command eli ’Y%results>’ is given in a directory with a file ‘Odinfile’ con-
taining this line, it will result in a non-interactive Eli session guaranteeing that
the derived object input +cmd=(mkhdr) :stdout is up to date, and writing
the content to the standard output. (The same effect can be obtained in an
interactive session by responding to the => prompt with %results>.)

%test ! == . +cmd=diff (Yiresults) (result) :run
%test is an executable target. An executable target is a target that is exe-
cutable. If the command eli test is given in a directory with a file ‘Odinfile’
containing this line, it will result in a non-interactive Eli session guaranteeing
that the derived object input +cmd=(mkhdr) :stdout (named %results) is up
to date, and executing the diff command with this object and the file ‘result’
from the current directory as arguments. Execution will take place in the cur-
rent directory. (The same effect can be obtained in an interactive session by
responding to the -> prompt with %test.)

The value of a target can also be specified directly as lines of text (a here document),
instead of as an odin-expression. In that case, the value declaration consists of two left-
angle-brackets optionally followed by an arbitrary tag identifier. For example, the following
‘Odinfile’ entry declares prog.c.sm to be a virtual text target:

hprog.specs == << END
main.c

routines.c
END

The value of prog.specs is then a file containing the text:

main.c
routines.c

If the tag identifier is omitted, the text value ends at the first line containing only
whitespace characters. Thus the previous definition could also be written as:

14

hprog.specs == <<
main.c
routines.c

Eli User Interface Reference Manual

Chapter 6: The Command Editing Mechanism 15

6 The Command Editing Mechanism

During an interactive Eli session, an odin-command may be edited before it is interpreted
by typing either control characters or escape sequences. (An escape sequence is entered by
typing ESC followed by one or more characters. Note that unlike control keys, case matters
in escape sequences; ESC F is not the same as ESC f.)

A control character or escape sequence may be typed anywhere on the line, not just at
the beginning. In addition, a return may also be typed anywhere on the line, not just at
the end.

Most control characters and escape sequences may be given a repeat count, n, where
n is a number. To enter a repeat count, type the escape key, the number, and then the
character or escape sequence:

ESC 4 °F

This sequence moves the cursor forward four characters. If a command may be given a
repeat count then the text “[n]” is given at the end of its description.

Eli accepts the following control characters when editing odin-commands:

~A Move to the beginning of the line

: Move left (backwards) [n]

°D Delete character [n]

“E Move to end of line

°F Move right (forwards) [n]

~G Ring the bell

“H Delete character before cursor (backspace key) [1]

"I Complete filename (tab key); see below

~J Done with line (return key)

“K Kill to end of line (or column [n])

~L Redisplay line

"M Done with line (alternate return key)

"N Get next line from history [n]

“P Get previous line from history [n]

"R Search backward (forward if [n]) through history for text; must start line if text
begins with an uparrow

T Transpose characters

v Insert next character, even if it is an edit command

W Wipe to the mark

XX Exchange current location and mark

Y Yank back last killed text

16 Eli User Interface Reference Manual

[Start an escape sequence (escape key)
~Jc Move forward to next character ¢
"7 Delete character before cursor (delete key) [n]

Eli accepts the following escape sequences when editing odin-commands:
ESC "H Delete previous word (backspace key) [n]
ESCDEL Delete previous word (delete key) [n]
ESC SP Set the mark (space key); see "X"X and ~Y above

ESC . Get the last (or [n]'th) word from previous line

ESC ? Show possible completions; see below

ESC < Move to start of history

ESC > Move to end of history

ESCb Move backward a word [n]

ESC d Delete word under cursor [n]

ESC f Move forward a word [n]

ESC 1 Make word lowercase [n]

ESC m Toggle whether 8-bit chars display normally or with the M- prefix
ESCu Make word uppercase [n]

ESCy Yank back last killed text

ESCw Make area up to mark yankable

ESC nn Set repeat count to the number nn

ESC C Read from environment variable _C_, where C is an uppercase letter

If you type the escape key followed by an uppercase letter, C, then the contents of
the environment variable _C_ are read in as if you had typed them at the keyboard. For
example, if the variable _L_ contains the following:

“A"Kecho ’~“V-[[H V" [[2J’"M

Then typing ESC L will move to the beginning of the line, kill the entire line, enter the
echo command needed to clear the terminal (if your terminal is like a VT-100), and send
the line back to Eli.

The command editing mechanism also supports filename completion. Suppose the root
directory has the following files in it:

bin vmunix core vmunix.old

If you type rm /v and then the tab key, Eli will finish off as much of the name as possible
by adding munix. Because the name is not unique, it will then beep. If you type the escape
key and a question mark, it will display the two choices. If you then type a period and a
tab, Eli will finish off the filename for you:

rm /v[TABlmunix.[TAB]old

The tab key is shown by [TAB] and the automatically-entered text is shown as munix.

Chapter 7: Variables 17

7 Variables

The behavior of Eli can be modified by changing the value of an Odin variable. The functions
affected by Odin variables are the current working directory, the distributed parallel build
facility, the help facility, the error and log facility, the file change notification facility, and
the maximum total file system space used by derived objects.

A variable assignment odin-command consists of the name of an Odin variable followed
by an = operator and an odin-expression. For example, the following odin-commands assign
the value ../src to the Dir variable and the value 4 to the WarnLevel variable (Odin
variable names are case-insensitive).

-> dir = ../src
-> warnlevel = 4

If the value is omitted from a variable assignment odin-command, Eli displays the current
value of the specified variable. After the preceding odin-commands, the current value of
WarnLevel is found by the command:

-> warnlevel =
4

The Odin variables and their default values are:
e Dir = eli_invocation_directory
e MaxBuilds = 2
e BuildHosts = LOCAL : LOCAL
e Size =0
e KeepGoing = yes
e History = yes
e Loglevel =2
e ErrLevel =3
e WarnlLevel = 2
e Helplevel =1
o VerifyLevel = 2
An initial value for an Odin variable can be specified in an environment variable whose
name is the the Odin variable name in capital letters preceded by the string ODIN. For

example, the initial value for MaxBuilds is specified in the ODINMAXBUILDS environment
variable.

7.1 Dir

The current working directory can be changed by assigning a new value to the Dir variable.
The value of the current working directory is especially significant for Eli, since it identifies
source objects by their absolute pathname, and the current working directory provides the
absolute pathname for all relative names.

18 Eli User Interface Reference Manual

7.2 BuildHosts, MaxBuilds

The BuildHosts variable specifies the list of hosts that are used to execute the tools that
generate the derived objects. A tool is executed on the first entry in the BuildHosts list
that does not have a currently executing tool. The name LOCAL refers to the local host.
The MaxBuilds variable specifies the maximum number of tools to execute in parallel.

The hosts in BuildHosts must have the same machine architecture and file namespace
as the local host.

A remote build host is activated by executing the shell script rbs.sh from the odin
package. It may be necessary to customize this script for different operating systems.

7.3 KeepGoing

When a build step reports errors, Eli will continue with build steps that do not depend on
the failed build step. Setting the value of the KeepGoing variable to no will cause Eli to
terminate the build when any build step reports an error.

7.4 History

The History variable specifies whether the command line editing is supported by Eli when it
is used as an interactive command interpreter (see Chapter 6 [Command editing], page 15).

7.5 ErrLevel, WarnLevel, LogLevel

When an odin-command is executed, Eli indicates any errors or warnings associated with the
odin-expressions specified in that odin-command. The ErrLevel and WarnLevel variables
specify how detailed this report is. In particular, the user can choose whether to see final
status information, to see messages incrementally as they are produced by tools steps, or to
see a summary of all relevant messages (including those from previously cached tool steps).

Eli can also produce a variety of information about the activities it is performing, such
as a brief description of each tool that is invoked to satisfy a given request. The LogLevel
variable specifies how detailed these messages are.

7.6 HelpLevel

The HelpLevel variable specifies what degree of detail is provided when the user asks for
a list of possible file or parameter types (see Chapter 8 [Help], page 21). Normally, only

commonly used types are described, but the HelpLevel can be increased to have all possible
types described.

7.7 VerifyLevel

By default, Eli checks the modification dates of all relevant source files at the beginning
of a session and before each interactive odin-command. If all file modifications during the
session are performed through copy odin-commands or through an editor that has been
upgraded to send a filename! :test odin-command to Eli whenever filename is modified,
the VerifyLevel variable can be set to 1 and only the check at the beginning of the session
is performed. If all file modifications since the last session have been performed in the above
manner, VerifyLevel can be set to O and the initial check is avoided as well.

Chapter 7: Variables 19

7.8 Size

The value of the Size variable indicates how much disk space (in kilobytes) is currently
being used by derived files.

7.9 Environment Variables

Environment variables can be used in odin-commands given during interactive sessions,
but are not allowed in an Odinfile (see Chapter 5 [Odinfile], page 13). For example, if
the environment variable $HOME has the value ‘/u/geoff’, then the following two odin-
commands are equivalent.

-> $HOME/sets.specs :exe
-> /u/geoff/sets.specs :exe

The value of an environment variable can be quoted by immediately preceding it with a
quoted identifier. For example, if the value of $DATA is /french/words, then the following
two odin-commands are equivalent.

-> sets.specs +monitor +arg=’/u/geoff’$DATA :mon
-> sets.specs +monitor +arg=’/u/geoff/french/words’ :mon

An environment variable is given a new value with a variable assignment odin-command
of the form: Variable = ! Value. (Note the use of !, in contrast to an odin-variable assign-
ment. It suspends Eli’s lexical conventions — see Chapter 4 [Execute Commands|, page 11.)
Thus the following odin-command sets the value of the environment variable $HOME to the
value ‘/u/clemm’:

-> HOME = !/u/clemm

The expressions ~ and “name are treated as if they were environment variables, bound
respectively to the login directory of the current user and the login directory of the user
with login name.

Chapter 8: The Help Facility 21

8 The Help Facility

A simple context-sensitive help facility is provided to describe the syntax of odin-commands
and the currently available object types and parameter types. If a user types a question-
mark anywhere in an odin-command, Eli provides a description of what could appear at
that location in the odin-command.

8.1 Source Type Help

If a list of the declared source object type-names is desired, a question-mark can be put in
place of the extension for a file:

-> sets?

?7*7 Known Suffix Types:

.lex_code Basic symbol coding

.regqmod Names of required files overridable by the user
.regsym Entry point symbols of required modules

.dapto Specification of events and messages for monitoring
.delit Literals to be deleted from the finite-state machine
.specs Set of specifications defining the desired processor
.cola Options for the parser generator cola

finl Lol Operations to be executed after finishing

.gnrec Generic module specification

.head Information to be prefaced to attribution modules
Jinit oLl Operations to be executed before starting

dibs ..., Libraries to include in the link

.lido Attribute grammar written in LIDO

.perr Parser error recovery information

.roff nroff/troff input

=To) + egn input

.bib .ol TeX bibliograph database

.clp ...l CLP specification

LCOM vvvnn Concrete syntax

ctl ..ol Control options for LIGA processing

dvi oLl Device-independent formatted file from TeX

.gla ..., Structure of comments and named terminals

.map ... Concrete/Abstract syntax mapping

0il ...l 0IL specification

pdl ..o PDL specification

.phi ...l Files to be included at specified places

.ptg ...l PTG specification

.8tr ... String table initialization

LSYym ... Symbolic grammar mappings

tex Lo TeX formatter input

tnf ool Specification of a hypertext document

ygL ool input grammar for the Tregrm tree-building parser generator
VW o a view-path system model

dg ool 0Odin Derivation Graph

22 Eli User Interface Reference Manual

B FunnelWeb specification

PS e Postscript file

LS system model of source code files
SV e e RCS version control file

T T object library archive

B Fortran77 source code
Ao Scanner grammar

Y e YACC input

This should be interpreted to mean that Eli will understand the types of the following
source files (among others):

sets.specs
fortran.con
build.HEAD.phi

8.2 Derivation Help

If a list of possible derivations is desired, a question-mark can be put in place of the deriva-
tion name, and Eli responds with a list of the possible object types that can appear at that
position:

-> sets.specs :exe :7

*7% Possible Derivations:

name name of a file

dir directory of a file

exXe Executable program

label label of a file

warn warnings

help Hypertext presentation of messages
warning Standard presentation of warning messages
error Standard presentation of error messages
err errors

filename filename of a file

depend source dependencies

profile execution profile

redo redo this object step

redo_errs redo all steps with errors

diff differences between two files

TCP v vieinnn archive

roff nroff/troff input

eqn output from eqgn

thl output from tbl

nroff output from nroff

stdout standard output from a test run
output output files from a test run

This should be interpreted to mean that Eli will understand the following derivations
(among others):

sets.specs :exe :help

Chapter 8: The Help Facility 23

sets.specs :exe :redo
sets.specs :exe :depend

8.3 Parameterization Help

If a list of the possible parameter types is desired, a question-mark can be put in place of
the parameter, and Eli responds with a list of the possible parameter types that can appear
at that position:

-> sets.specs :exe +7
7% Possible Parameters

ignore Prefix of include file names to be ignored
libl a library name

lib_sp name of a directory in an library search path
prof_data trace file

prof_flags prof flags

default default value

other another file

f_dest file destination

d_dest directory destination

1]« macro package

cmd ...l host command

need run dependency

This should be interpreted to mean that Eli will understand the following derivations
(among others):
sets.specs :exe +ignore
sets.specs :exe +d_dest
sets.specs :exe +prof_data ...
A more exact form of parameter help can be specified by indicating which derivation
you intend to apply to the parameterized object:
-> sets.specs :exe +7 :profile
*7x% Possible Parameters
prof_data trace file
prof_flags prof flags
This should be interpreted to mean that Eli will understand the following derivation
(among others):

sets.specs :exe +prof_data=foo :profile

Since the +cmd parameter is not relevant to the derivation from :exe to :profile, it is
not listed.

8.4 Variable Help

A list of the available variable names is generated in response to the request 7=:
-> 7 =
Dir MaxBuilds BuildHosts Size KeepGoing History
Loglevel ErrLevel WarnLevel HelplLevel VerifyLevel

24 Eli User Interface Reference Manual

A description of the possible values that can be assigned to a given variable is generated

in response to the Variable = 7:
-> Loglevel = 7

No log information is generated.
Build commands are echoed.
And Eli commands.
And names of objects with errors.
And names of objects generated by tool scripts.
And names of objects generated by internal tools.
And names of objects deleted.
And names of objects touched by broadcast.

~NOo Ok W N O

Index

Index

BuildHOStS. .o ovie i 17

C

copy commands.iiiiiiiiii i 9

D

ErrLevel i 17
executable target................... 13
expressions for derived objects.............. 3

F

filetarget............. L 13

H

HelpLevel..o 17
History.........ooiiiiiiii 17

25
KeepGoing.t 17
Loglevel..........oooiiiiii L, 17
MaxBuilds..........coiiiiiiiiiiiiiii, 17
name, of anobject............l 3
object mame.............oiiiiiiiiiiiiii 3
odin-expressions...............oiiiiiiiiiaa, 3
‘0dinfile’t 13
parameter tyPettt 4
parameter value 4
Size ... 17
source object............l 3

T

target ..o 13
type, of a parameter in an odin-expression.. 4

vV

value, of a parameter in an odin-expression

.. 4
VerifyLevel 17
virtual targetl 13

\%\%

WarnLevel..........iiniiiiiii i 17

	Referring to Objects
	Lexical Conventions
	Selection Expressions
	Derivation Expressions
	Parameterization Expressions

	Bringing Objects Up To Date
	Status of Objects
	Error and Warning Messages

	Extracting and Editing Objects
	Copying to Standard Output
	Editing with the Copy Command

	Execute Commands
	The Odinfile
	The Command Editing Mechanism
	Variables
	Dir
	BuildHosts, MaxBuilds
	KeepGoing
	History
	ErrLevel, WarnLevel, LogLevel
	HelpLevel
	VerifyLevel
	Size
	Environment Variables

	The Help Facility
	Source Type Help
	Derivation Help
	Parameterization Help
	Variable Help

	Index

