Command Line Processing

$Revision: 1.27 $

A. M. Sloane

Department of Computing
Division of Information and Communication Sciences
Macquarie University

Sydney, NSW 2109
Australia

Copyright, 1994-1999 Anthony M. Sloane

Table of Contents

1 What is a command line interface?............ 3
2 What happens by default?..................... 5
3 Specifying the command line interface........ 7
3.1 The general format of the command line........................ 7
3.2 Options that are either there ornot 7
3.3 Options that have a value given with them 7
3.4 Options that are joined to their values.......................... 8
3.5 Multiple option strings for the same option..................... 8
3.6 The order of option specification lines 9
3.7 Options that affect usage messagesccvivn... 9
3.8 Terminating the option list......... L. 10
3.9 Parameters given by their command line position.............. 10
3.10 Input parameterscouiiiiiiii i 11
3.11 Documentation options and parameters 11
4 Accessing the command line.................. 13
4.1 Accessing boolean options......... ..., 13
4.2 Accessing options with integer values.............. 13
4.3 Accessing options with string values........................... 13
4.4 Accessing options that appear more than once................. 14
4.5 Accessing positional parameters............. ..., 14
4.6 Accessing input parametersiiiiiiiii i 15
4.7 Reporting OPEen €ITOTSvttttt ettt 15
5 Complete Grammar Listing 17

A processor generated by Eli may need to interact with its environment by way of the
command line that invokes it. This manual describes the default behaviour and how you
can perform more sophisticated command line processing. We will refer to Eli’s command
line processing support as CLP.

Chapter 1: What is a command line interface? 3

1 What is a command line interface?

When a processor is invoked it will be from an interactive or batch shell of some kind. A
command line will be used to specify the name of the processor and any inputs that it
needs. A few typical Unix command lines are:

cc -o fred.exe fred.c
vi fred.c
rlogin prep.ai.mit.edu -1 rms

Note that a pipe command such as:
format doc.troff | lpr -Plaser
consists of two command lines because two programs are invoked.

In these examples various options are given to some of the tools via the command line.
For example, -o fred.exe specifies that the output file of the C compilation should be
called fred.exe rather than the default a.out. A major part of the job of a command line
interface is to provide mechanisms for specifying which options are legal and allowing the
processor to find out which ones the user actually supplied.

Other information can be provided on the command line in the form of positional
parameters. For example, fred.c in the first two examples and prep.ai.mit.edu in the
last are positional parameters. A command line interface is also responsible for providing
access to positional parameters.

Unix provides access to the components of the command line for C programs via the

argc and argv parameters to the main function. The facility described in this manual uses
those parameters to provide higher-level access.

Chapter 2: What happens by default? 5

2 What happens by default?

The default command line interface provided by Eli assumes that the generated processor
will have one input file and no options.

A processor proc generated with the default command line interface can be invoked in
the following ways:

proc No options or input files. Input is assumed to come from standard input.

proc input
No options, one input file. Input comes from input.

Any other way
Signalled as an error.
The default behaviour is achieved using the following command line specification:
InputFile input "File to be processed";
see Chapter 3 [Specification], page 7, for details on the specification language.

Chapter 3: Specifying the command line interface 7

3 Specifying the command line interface

If the default behaviour is not sufficient you can alter the command line interface using a
file whose extension is .clp. The following sections show how to specify the varieties of
options that the interface may need to handle.

3.1 The general format of the command line

The general format of a command line that can be recognised using a .clp specification is:
1. The program name, followed by
2. An arbitrary number of options, followed by

3. An arbitrary number of positional parameters.

A . clp specification describes the legal options and positional parameters.

If the .clp specification is empty the effect is to prohibit all options and positional
parameters. A processor generated in this manner must get its input from standard input.

3.2 Options that are either there or not

A Dboolean option is something like the =S (produce assembly code) or -c (compile only,
don’t link) options for the standard Unix compilers. That is, the option string is all that is

needed.
A specification line of the form:
D)

name string ‘boolean’ ‘;

describes a boolean option called name which is indicated by the command line string string.
For example:

GenAssembly "-S" boolean;
CompileOnly "-c" boolean;

describe the compiler options mentioned above.

If a boolean option can appear more than once on the command line you should use the
keyword booleans instead of boolean. Thus, the specification line:

WideListing "-w" booleans;

says that the user can give as many -w options as they like. For example, the processor
can check the number provided and produce a listing of the appropriate width. (See the
Berkeley Unix ps command.)

3.3 Options that have a value given with them

Some options need values. CLP supports two types of values: strings and integers. Typical
options of these types would be the -o (generate output in the specified file) option of a
Unix compiler, or the -# (print this many copies) option of a line printing program.
A specification line of the form:
name string type ‘;’

describes a value option called name which is indicated by the command line string string
and accepts values of the specified type separated from the indication by whitespace. The

8 Command Line Processing

valid types are int, ints, string and strings. The plural versions denote value options
that may appear more than once on the command line.

For example:

OutputFile "-o" string;
NumCopies "-#" int;

describes the options mentioned above and
Command "-e" strings;

describes a repeatable option (see the Unix command sed, for example).

3.4 Options that are joined to their values

Value options as described in the previous section are separated from their values by white
space. If this is not desired, joined value options can be used and no white space will be
expected. Examples of joined value options are — which is used by the Unix head program
to designate how many lines to print (eg. head -42 file), and -temp= which is used by
some compilers to describe where to put temporary files (eg. pc ~temp=/usr/tmp file.p).

To describe a joined value option, use the specification line as described in the previous
section with the keyword joinedto before the type specifier.

For example, the following specification lines describe the options mentioned above:

TmpFile "-temp=" joinedto string;
NumLines "-" joinedto int;

Joined value options can be repeated in the same way as normal value options. For
example,

MacroPackage "-m" joinedto strings;

In some cases it is desirable to allow the option to be joined to its value or to be separated
from its value by whitespace. To specify this behaviour the keyword with can be used before
the type specifier. with can also be used with repeated options of both integer and string

type.

For example, the following specification line describes an option -x for which both of
the following uses would be legal:

-x42 -x 42

Exit "-x" with int;

3.5 Multiple option strings for the same option

The previous three sections have described options with associated values. In some cases it
is useful to be able to invoke these options with more than one string on the command line.
To specify this kind of behaviour just list all of the option strings instead of just one.

For example, the following specification line says that the printing option can be invoked
with any of the following: -p, +pr, or ——print.

Print "-p" "+4pr" "--print" boolean "Print the output";

Chapter 3: Specifying the command line interface 9

3.6 The order of option specification lines

Care must be taken when writing a CLP specification to ensure that the specification lines
are ordered correctly. When processing the command line, CLP looks for options in the
order that you specify them. A problem can occur if some option indication is a prefix of
another option indication specified later.

For example, the code generated from the specification:
ModuleOption "-m" joinedto string;
ManOption "-man" string;

will never recognize the —man option because ModuleOption will be tested for first. Putting
the specification of ManOption first will fix the problem.

3.7 Options that affect usage messages

CLP will automatically arrange for the usage message to be displayed when an erroneous
condition is discovered. Sometimes it is nice to be able to implement an option that the
user can use on purpose to get the usage message.

A specification line of the form:
‘usage’ string ;’
declares string to be such an option. Multiple usage options are allowed.

If a usage option is specified on the command line by the user when running the generated
processor, the usage message is displayed and execution is terminated. All other options
and/or parameters are ignored.

A report can be sent to the standard error stream if the program detects some error
in opening a file specified on the command line. To send the report, the program calls
ClpOpenError with two arguments (see Section 4.7 [Reporting open errors|, page 15).

The text of the report is defined by writing a description of the form:

‘open’ ‘error’ ‘format’ string ‘;’

String defines the text, and may contain escape sequences of the form ‘%C’ that are replaced
before the report is output:

Wt Replaced by the first argument of the ClpFileError call (usually the name of
the file that could not be opened).

Wt Replaced by the second argument of the ClpFileError call (usually a string
describing the system error).

hp Replaced by the name of the program being executed.

oo Replaced by a single %.

#C Where ‘C’ is not £, p, t, or %, replaced by nothing.

A CLP specification may contain an arbitrary number of report definitions, but only the
last one encountered will be used. CLP assumes that every specification begins with the
following report definition:

open error format "%p cannot open %f: %t";

Sometimes it is useful to print the usage message when a file cannot be opened. For

example, cases like this occur when the user mistypes an option which is then interpreted

10 Command Line Processing

as a filename. By default, the usage message is not printed when a file cannot be opened.
To cause it to be printed, use a specification line of the form:

‘open’ ‘error’ ‘usage’ ‘;’
3.8 Terminating the option list

For many processors it is useful to allow the user some way of saying that a command line
string that looks like an option isn’t really one. For example, this situation may arise when
using the Unix rm command. If a user wants to remove a file called -r they would rather
not have the filename interpreted as an option to recursively delete subdirectories.

One way of coping with this is to allow the user to type a special command line string
that causes option recognition to terminate. For example, a user could type:

rm -i -- -r
to interactively (-i) delete a file called -r.

The termination facility of CLP lets you specify which string (or strings) should cause
this behaviour. A specification line of the form:

‘terminator’ string ‘;’
declares string to be such a string. Multiple terminator specifications are allowed.
To get the behaviour described above for rm the following would be used:

terminator "--";

3.9 Parameters given by their command line position

Parameters that are interpreted according to their position on the command line are called
positional parameters. For example, when invoking a remote login program the remote
machine name may be given as a positional parameter.

A specification line of the form:
name ‘positional’ ‘;’
describes a situation where a positional parameter is to be recognized and called name.

The plural form:

name ‘positionals’ ‘;’

can be used if a group of positional parameters is to be handled and grouped together.

Multiple positional parameters can be recognized by giving multiple specification lines
of these kinds. Parameters will be recognized in the order that they are specified. If a
plural form is present, it should be the last positional parameter specification line because
it will represent all of the positional parameters from that point on. In that case, the
processor generated will accept varying numbers of parameters. If no plural form is given,
the processor will accept a fixed number of parameters equal to the number of singular
positional parameter specification lines.

Chapter 3: Specifying the command line interface 11

3.10 Input parameters

An input parameter is a special case of a positional parameter. Its value must be a file name,
and that file will replace standard input as the primary source of data for the program. An
error will be reported if the named file cannot be opened for input. Only one input parameter
may be specified.

A specification line of the form:

name ‘input’ ‘;’

describes a situation where a positional parameter is to be recognized, called name, and
used as the primary source of data for the program.

If an input parameter is specified, but the user does not provide a value for it on the
command line, then standard input is used as the primary source of data for the program.

If no input parameter is specified then the processor will not be able to get input from
a file (unless otherwise programmed using positional parameters). Standard input will be
used as the primary source of data for the program.

3.11 Documentation options and parameters

If the user specifies things incorrectly on the command line the usual practice is to produce
a usage message and terminate execution of the processor. CLP will automatically produce
a usage message in this fashion. It is possible to attach descriptions to the option and
parameter specification lines to make this usage message more helpful to the user.

Each of the types of specification lines described above (except those for termination of
option processing) can have a documentation string. Typical examples are:

CompileOnly "-c" boolean "Just compile, don’t link";
MacroPackage "-m" joinedto strings "Load this macro package";
FileName input "File to be processed";

Others positionals "Other positional parameters";

Chapter 4: Accessing the command line 13

4 Accessing the command line

A CLP specification is turned into code that arranges for command line information to be
stored in C variables or a simple database. This code is automatically run by the processor
startup code generated by Eli. During attribution of a structure tree you can access the
variables or use access functions to obtain the command-line information.

The header file ‘clp.h’ will contain extern declarations for all values defined by the
CLP-generated code. It should be included wherever these values must be accessed.

4.1 Accessing boolean options

Since boolean options do not have value information associated with them, all that is needed
to represent them is a simple flag rather than a database object. We store the flag as a C
integer variable whose name is the option name.

For example, given the specification:
GenAssembly "-S" boolean;

CLP will generate a variable called GenAssembly. Typical C code to test for this option
would look like:

if (GenAssembly)

printf ("GenAssembly specified\n");
else

printf ("GenAssembly not specified\n");

4.2 Accessing options with integer values

To provide access to integer value options, CLP generates a database object which has the
appropriate value as a property. The object is referred to by a key-valued variable named
after the option. For example, given the specification:

NumCopies "-#" int;
CLP will generate a variable called NumCopies. The value of the variable can be used to
access the option value using the GetClpValue property access function.
printf ("NumCopies value is %d\n", GetClpValue (NumCopies, 0));
Here 0 will be printed if the option was not specified by the user.
Alternatively, presence of the option can be tested for explicitly by testing the key:

if (NumCopies == NoKey)
printf ("NumCopies not specified\n");
else
printf ("NumCopies value is %d\n", GetClpValue (NumCopies, 0));

In this case the default value parameter in the GetClpValue call will never be used.

4.3 Accessing options with string values

Access to string value options is provided via a database object which has the appropriate
value as a property. The object is referred to by a key-value variable named after the option.
For example, given the specification:

14 Command Line Processing

TmpFile "-temp=" joinedto string;

CLP will generate a variable called TmpFile. GetClpValue is used to obtain the value
which should be interpreted as a string table index (see Section “Arbitrary-length character
strings” in Library Reference).

#include "csm.h"

if (TmpFile == NoKey)
printf ("TmpFile not specified\n");
else

printf ("TmpFile value is ’%s’\n", StringTable (GetClpValue (TmpFile, 0)));

4.4 Accessing options that appear more than once

The mechanisms described in the previous three sections only apply to options that can
appear at most once on the command line. More complicated mechanisms are needed to
access values associated with repeated options.

CLP uses linked lists of definition table keys to provide multiple value access. The
lists are implemented using Eli’s List module. See Section “list” in Specification Module
Library: Abstract Data Types.

Given the specification:
MacroPackage "-m" joinedto strings;
the list module lets you print the multiple values (via keys) as follows:

#include "csm.h"
#include "clp.h"

DefTableKey printkey (DefTableKey k)

{
printf ("%s", StringTable (GetClpValue (k, 0)));

(void) MapDefTableKeyList (MacroPackage, printkey);

Boolean repeated options are an exception to this list approach. Since no value is
associated with the option there is little point in having a list of keys. For this reason,
boolean repeated options are implemented as a single integer whose value is the number of
times the option appeared.

4.5 Accessing positional parameters

For each singular positional parameter specification line CLP generates a variable of the
appropriate name holding the key to a database object that has the string value of the
positional parameter as a property. The value can be accessed as for string value options
(see Section 4.3 [String value options], page 13).

CLP will always make sure that a positional parameter is specified and will arrange for
a usage message to be printed otherwise. Thus there is no need to test that the database
object described in the previous paragraph is defined. For example, given the specification
line:

Chapter 4: Accessing the command line 15

FileName positional;
the following code can be used to print the specified value:

#include "csm.h"

printf ("Filename given was ’%s’\n", StringTable (GetClpValue (FileName, 0)));

When a plural positional parameter specification line is given the mechanisms used for
repeated option values are used (see Section 4.4 [Repeated options], page 14). For example,
if a processor can take multiple input files a specification like the following might be used:

FileNames positionals;

The following code can be used to print these parameters See Section “Linear Lists of Any
Type” in Specification Module Library: Abstract Data Types.

#include "csm.h"

#include "clp.h"

DefTableKey printkey (DefTableKey k)
{
printf ("%s", StringTable (GetClpValue (k, 0)));

(void) MapDefTableKeyList (FileNames, printkey);

4.6 Accessing input parameters

Since an input parameter is just a special kind of positional parameter, its value (which is
the name of the input file) can be accessed as shown in Section 4.5 [Accessing positional
parameters|, page 14.

The input parameter may also be accessed via the standard name CLP_InputFile.

4.7 Reporting open errors

CLP defines the text of an error report that a program can write to standard error when
a file cannot be opened (see Section 3.7 [Usage options|, page 9). The program writes this
error report by invoking the ClpOpenError routine:

void ClpOpenError(const char *filename, const char *errtext)

/* On entry-
* filename points to the string to replace any %f escape in the report
* errtext points to the string to replace any %t escape in the report

* On exit-
* The modified report has been written to stderr
*/

Although the role of the argument strings is completely arbitrary, the usual practice is to
use the name of the file being opened as the value of filename and the string corresponding
to the system error as the value of errtext. Here is a code fragment illustrating the typical
usage:

#include <errno.h>

16

#include <string.h>

int infile = open(infilename, O0);

if (infile == -1) {
ClpOpenError(infilename, strerror(errno));
exit(2);

}

Command Line Processing

Chapter 5: Complete Grammar Listing

5 Complete Grammar Listing

The following is the complete input grammar for the facilities described in this manual.

clp_spec ::= params .
params ::= / params param ‘;’ .
param ::=

identifier strings type doc /
identifier strings ‘joinedto’ valtype doc /
identifier strings ‘with’ valtype doc /
‘usage’ string / ‘terminator’ string /
‘open’ ‘error’ ‘format’ string /
‘open’ ‘error’ ‘usage’ .
type ::= ‘boolean’ / ‘booleans’ / ‘positional’ /
‘positionals’ / valtype .

valtype ::= ‘int’ / ‘ints’ / ‘string’ / ‘strings’.
doc ::= / string .

strings ::= string / strings string .

17

Index

19

20

booleamoouutii 7
boolean option ... 7
boolean options repeated 14
booleans ...t 7
C

CLP_InputFile....... ..o, 15
ClpOpenError................oiiiiiiiiinnn.. 9, 15
command line.......... il 3
command line format........................... 7

D

default interface................ ..., 5
DefTableKeyList............... ...t 14
documentation............ .. i, 11

E

empty specification................... ... 7
error format.......l 9
general formatol 7
GetClpValue...............ooiiiiiiinn... 13, 14
grammar listing...................... 17

I

INPUL .« 11
input file..... ... 5
input parameter................. 11, 15
int.o.oo 8
integer values 7
ints.....oo 8

joined value options.......................... 8
joinedto........ 8

L

linked list......... ... 14

Command Line Processing

M

open error formatol 9
OPEN EXTOY USALZE .+ v v vvvvvvvvevnvenennnnnnnnnns 10
order of option specification lines.......... 9
order of specification lines................ 10

P

positiomal.........l 10
positional parameters..................... 3, 10
positionals, 10
prefixes....... ... 9

R

repeated boolean options 14
repeated options................. 7,8, 14

S

standard inputol 57,11
stopping option recognition................. 10
string ... 8
string table.......... .o 14
string values................. ...l 7
strings.......... .. 8
StringTablec.ouuiiiiiiiiiiiiiiinnnn 14

T

termination string............... 10
terminator............l 10

U

USAZE MESSAZE « v v v vvvvvvvvvvvnnnnnnnnnns 9,11, 14

vV

value options. ...t 7

A%

	What is a command line interface?
	What happens by default?
	Specifying the command line interface
	The general format of the command line
	Options that are either there or not
	Options that have a value given with them
	Options that are joined to their values
	Multiple option strings for the same option
	The order of option specification lines
	Options that affect usage messages
	Terminating the option list
	Parameters given by their command line position
	Input parameters
	Documentation options and parameters

	Accessing the command line
	Accessing boolean options
	Accessing options with integer values
	Accessing options with string values
	Accessing options that appear more than once
	Accessing positional parameters
	Accessing input parameters
	Reporting open errors

	Complete Grammar Listing
	Index

