Tasks related to input processing

Uwe Kastens

University of Paderborn
D-33098 Paderborn
FRG

$Revision: 3.7 $

Table of Contents

1 Insert a File into the Input Stream
2 Accessing the Current Token

3 Command Line Arguments for Included Files

This library contains modules that support insertion of files into the currently processed
input file. The name of the file to be inserted is computed from information of the current
input file. Such computations have to be executed immediately while the input is being read
(bottom-up in terms of tree construction). This library also contains a module that supports
command line arguments of the generated processor which specify directories where files to
be included are searched.

Include Insert a File into the Input Stream
CurrTok Accessing the Current Token

CmdLinelIncl
Command Line Arguments for Included Files

Include is the central module to solve the file inclusion task. It is based on the mod-
ules CoordMap and GlaCorr which are automatically instatiated when Include is used.
(CoordMap and GlaCorr are not intended to be used directly in specifications.) The module
CmdLineIncl can be used additionally to enable the command line feature.

The module CurrTok provides access to the current token, which has just been accepted
by the scanner. It may supply the file name to the function provided by the Include
module, if that function is issued in computations specified in the concrete grammar rather
then in .1ido computations.

Chapter 1: Insert a File into the Input Stream 3

1 Insert a File into the Input Stream

This module supports generating processors that include the contents of a file into the
currently read input stream. The effect is the same as that known from the preprocessor
cpp- There file inclusion is initiated by a cpp command like #include "myfile", here it is
initiated by a computation of the language processor. It usually takes the file name from
the text of a token found in the input stream.

Such facilities are used, for example, in some systems for functional or logical languages,

where commands like
use ["myfile"]
cause the inclusion of the given file at the place of the use command.

The file is included at the current position of the input stream when that computation
is executed. That computation can either be specified within the concrete grammar to be
initiated by the parser. Or it can be specified in a .1lido specification. In the latter case
the computation has to be executed while input is being read (and the tree is constructed
bottom-up) to achieve the desired effect.

This module is instantiated without generic parameters by

$/Input/Include.gnrc:inst
The module provides the following function:

int NewInput (char *name)
It switches input reading to the file named name. When its end is encountered
input reading is switched back to the next not yet processed token in the file
that was the current when NewInput was called. The call of NewInput yields 1
if the file could be opened; otherwise it yields 0.

This facility is demonstrated by inserting a construct into our running example that
allows to comprise sets of declarations on separate files and include them in the program
text. Such declaration files may be used to specify common interfaces.

The file inclusion construct is introduced by the concrete productions

Declaration: FileInclusion ’;’.
FileInclusion: ’include’ FileName.

We add a scanner specification for the terminal symbol FileName:
FileName: C_STRING_LIT [c_mkstr]
Hence, an input program may contain file inclusion commands like include "myfile";
wherever a Declaration is allowed.
The following .1ido specification attaches the call of NewInput to the FileInclusion
context:

ATTR InpFileEx: int;
RULE: FileInclusion ::= ’include’ FileName COMPUTE
.InpFileEx = NewInput (StringTable (FileName)) BOTTOMUP;

IF (NOT (.InpFileEx),
message (ERROR, CatStrInd ("can not open file ", FileName),

4 Tasks related to input processing

0, COORDREF));
END;

The file name is specified to be the text of the FileName token. The computation has
to executed while the input is read and the tree is built bottom-up. Hence it is specified
BOTTOMUP.

Note: The above computation is executed when the FileInclusion tree node is
built. Then the last token read from the current input stream is the terminating ; of the
Declaration, due to the lookahead of the parser. Hence, the contents of the included file
is being processed as if it stood immediately following that ; of the Declaration. Due
to this reason it was essential to use two productions in the concrete grammar as stated
above. A single production like

Declaration: ’include’ FileName ’;°.

instead would delay insertion until the token following that ; has been read.

Chapter 2: Accessing the Current Token 5

2 Accessing the Current Token

This module provides a function GetCurrTok that can be used to access the string of the
current token read from input. The function is used for example to access the name of a
file to be included if the switching computation is issued by the parser as specified in the
concrete grammar.

This module is instantiated without generic parameters by
$/Input/CurrTok.gnrc:inst
The signature of the function is
char *GetCurrTok (void)

It accesses the string of the current token, stores it in memory, and yields a
pointer to the stored string as result.

In our running example we could achieve the same effect of file inclusion as described
in (see Chapter 1 [Include], page 3), by specifying a computation in the concrete grammar
rather than in a .1lido specification:

Declaration: ’include’
&’ChkFileOpnd (NewInput (GetCurrTok()), GetCurrTok());’
FileName ’;°’.
The token of FileName that immediatly follows the computation is accessed. The call of
ChkFileOpnd is assumed to check for success of the NewInput call.

Chapter 3: Command Line Arguments for Included Files 7

3 Command Line Arguments for Included Files

Using this module introduces processing of a command line option into the generated pro-
cessor: If the processor is called

processor.exe —-Idirname filename

then files to be included are searched in the current directory and in dirname. This
module provides specifications for the Eli’s CLP tool to achieve the effect.

This module is instantiated without generic parameters by
$/Input/CmdLinelIncl.gnrc:inst

The module provides a function that can be used together with calls of the NewInput
function:

char * FindFile (char *name)
It searches the file named name in the current directory and in the directories
given by -I command line arguments.

In order to use this facility the FindFile function has to be applied to the argument
of the function NewInput. Hence, the examples of the two previous sections had to be
rewritten as

ATTR InpFileEx: int;
RULE: FileInclusion ::= ’include’ FileName COMPUTE
.InpFileEx = NewInput (FindFile (StringTable (FileName))) BOTTOMUP;

IF (NOT (.InpFileEx),
message (ERROR, CatStrInd ("can not open file ", FileName),
0, COORDREF));
END;
for the case of the . 1ido specification of input switching as shown in (see Chapter 1 [Include],
page 3), or
Declaration: ’include’ &’NewInput(FindFile (GetCurrTok()));’ FileName ’;’.

for the case of the concrete grammar specification of input switching as shown in (see
Chapter 2 [CurrTok], page 5).

Index

Index

B

bottom-up...........oiii 1
BOTTOMUP . ..o 3

C

CatStrInd........coniiiiiii i 3
command line arguments........................ 5

D

directories.oiiiini i e 5
FindFile....... i 7
function FindFile...............coiviiiiinn... 7
function GetCurrTok...........civiinninnn.. 4
function NewInput........................... 3,7

9
input file inclusion 1,5
input file insertion................ 1
Input Processing...................ooiinan, 1
Library Input..........cooiiiiiiiia., 1
Module CmdLineIncl................cooviinnn... 5
Module CoordMapoouvuiuuunnninaannnn. 1
Module CurrTokooiviiiiiiinnnnnn, 4
Module GlaCorrcoviuiiiiiiiinnnnnnnn, 1
Module Includeoiiviiiiiiniennnn, 1

N

NewInput, 3,5

	Insert a File into the Input Stream
	Accessing the Current Token
	Command Line Arguments for Included Files
	Index

