New Features of Eli Version 4.7

Uwe Kastens

University of Paderborn
D-33098 Paderborn
FRG

A. M. Sloane

Department of Computing
Division of Information and Communication Sciences
Macquarie University
Sydney, NSW 2109
Australia

W. M. Waite

Department of Electrical and Computer Engineering
University of Colorado
Boulder, CO 80309-0425
USA

$Date: 2009/10/15 21:17:47 $

Table of Contents

New Features of Eli Version 4.7...................
1 Abstract Rule Names in Mapping Rules......

2 Change in the Token Processor Interface.....

New Features of Eli Version 4.7 1

New Features of Eli Version 4.7

This document gives information about new facilities available in Eli version 4.7 and those
modifications made since the previous distributed Eli version 4.6 that might be of general
interest. Numerous corrections, improvements, and additions have been made without being
described here.

Chapter 1: Abstract Rule Names in Mapping Rules 3

1 Abstract Rule Names in Mapping Rules

Some abstract grammars have several rules with different names and identical signatures
(this is relatively common in computed trees, see Section “Computed Subtrees” in LIDO -
Reference Manual). If such rules are represented in an unambiguous manner in text, and
that text is parsed, one must be able to map the disambiguated concrete rules into the
appropriate abstract rules. Because the abstract rules have identical signatures, pattern
matching won’t work.

In order to solve this problem, the Maptool now accepts an optional rule name in a rule
mapping (see Section “Specifying rule mappings” in Syntactic Analysis). A simple example
might be a representation of dyadic expressions without explicit operators:

RULE Add: Expression ::= Expression Expression END;
RULE Mul: Expression ::= Expression Expression END;

Suppose that such nodes are represented in text by fully-parenthesized arithmetic expres-
sions in the standard notation. Rule mappings specifying the rule names explicitly would
then be needed to disambiguate the pattern match:

MAPRULE

Expression: ’(° Expression ’+’ Expression ’)’ < $1 $2 >: Add .

Expression: ’(° Expression ’*’ Expression ’)’ < $1 $2 >: Mul .

Chapter 2: Change in the Token Processor Interface 5

2 Change in the Token Processor Interface

Input character strings are converted into internal representations by token processors (see
Section “Token Processors” in Lexical Analysis). A token processor should not alter the
string that it is converting in any way, but the original interface specification did not enforce
that restriction because C did not provide a const qualifier.

In many applications, it is important to apply token processors to literal string constants.
Recent C++ compilers do not allow literal string constants to be passed to character string
parameters that are not const-qualified. We therefore decided to alter the token processor
interface by const-qualifying its character string parameter.

A string pointer that is not const-qualified can always be passed to a const-qualified pa-
rameter; only the reverse is prohibited by the C definition. Thus this change is transparent,
unless you have defined your own token processors. In the simplest case, you need only add
the const qualifier to the first parameter in your token processor’s definition. If your token
processor does, however, alter its argument string (for example, by planting a null character
at the end) then it must be rewritten.

Index

Index

T

tOKEN ProCeSSOTS .« oottt

	New Features of Eli Version 4.7
	Abstract Rule Names in Mapping Rules
	Change in the Token Processor Interface
	Index

