New Features of Eli Version 4.2

Uwe Kastens

University of Paderborn
D-33098 Paderborn
FRG

A. M. Sloane

Department of Computing
School of Mathematics, Physics, Computing and Electronics
Macquarie University
Sydney, NSW 2109
Australia

W. M. Waite

Department of Electrical and Computer Engineering
University of Colorado
Boulder, CO 80309-0425
USA

$Revision: 3.3 $

Table of Contents

1 New FunnelWeb Typesetter Support 3
2 New token processor lexerr.................... 5
3 OIL ... 7
4 Tree Parsing.................. 9
5 ModLib. 11

6 Caution Needed in Specifying a Compiler... 13

This document gives information about new facilities available in Eli version 4.2 and
those modifications made since the previous distributed Eli version 4.1 that might be of
general interest. Numerous corrections, improvements, and additions have been made with-
out being described here. They shall just help users to solve their problem without taking
notice of Eli’s mechanism.

Chapter 1: New FunnelWeb Typesetter Support 3

1 New FunnelWeb Typesetter Support

Two typesetter pragmas have been added to FunnelWeb:

Op typesetter = latex
Op typesetter = latex2html

These pragmas cause the derivation :fwTex to create text acceptable to LaTeX and
latex2html respectively. They are identical as far as the treatment of text is concerned,
but differ in how they handle FunnelWeb macro definitions and invocations. In both cases,
normal LaTeX and latex2html markup can be used in the text portions. Macro definitions
and calls are implemented using LaTeX markup when latex is specified, and latex2html
markup when latex2html is specified.

In both cases the user must supply an appropriate LaTeX preamble, \begin{document}
and \end{document} as part of the document text. This means that it is possible to combine
the outputs from several :fwTex derivations into a single document by using appropriate
LaTeX \input commands.

The preamble must include the LaTeX command \usepackage{alltt} for either of
these pragmas, and latex2html also requires \usepackage{html}.

The FunnelWeb section directives are normally translated to LaTeX sectioning com-
mands as follows:

e QA \section

e OB \subsection

e @C \subsubsection

e @D \paragraph

e QE \subparagraph

If the +chapter parameter is passed to the :fwTex derivation, however, the translation

is:

e QA \chapter

e OB \section

e Q@C \subsection

e @D \subsubsection

e QE \paragraph

Chapter 2: New token processor lexerr 5

2 New token processor lexerr

The token processor lexerr reports that the character sequence is not a token. It does not
alter the initial classification, and does not compute a value.

Normally, a lexical analyzer generated by Eli attaches an error report to each character
that it does not recognize. While this behavior is adequate in most cases, it is sometimes
necessary for the designer to specify a particular sequence of characters to be erroneous.
One typical example is disallowing tab characters:

TAB [1lexerr]

The canned description TAB handles all of the coordinate updating (see Section “Maintaining
the source text coordinates” in Lexical Analysis). Since there is no label on this line, the tab
character is classified as a comment. That classification is not changed by lexerr, which
simply reports a token error at the coordinates of the tab (see Section “Making White Space
Illegal” in Lexical Analysis).

There is no source file for lexerr; it is a component of the scanner itself, but its interface
is exported so that it can be used by other modules.

Chapter 3: OIL 7

3 OIL

Four constant definitions have been added to the OIL library in an effort to simplify code
using it and to bring its interface more into line with other interfaces in the Eli system.
These new definitions do not change the library’s functionality in any way:

0ilInvalidType
The type to which all types can be coerced, and which can be coerced to any
type. This is the value returned by 0ilErrorType().

0ilInvalidOp
The invalid operator, resulting from an operator identification failure. This is
the value returned by 0ilErrorOp().

0OilEmptyArgSig
The empty signature, used in constructing signatures. This is the value returned
by 0ilNewArgSig().

0ilEmptySetSig
The empty type set signature, used in constructing argument lists. This is the
value returned by 0ilNewSetSig().

Chapter 4: Tree Parsing 9

4 Tree Parsing

Type-‘.tp’-files specify tree parsers. Tree parsers can be used to transform, interpret and
print tree-structured data. They are particularly useful for problems in which the action
at a node depends strongly on the context in which that node appears. Code selection is
a common example of this kind of problem: The code selected for an operation is largely
determined by that operation’s context.

Specifications written in the TP language are analyzed for consistency and then com-
piled into specifications for the BURG processor (Fraser, C. W., R. R. Henry and T. A.
Proebsting, “BURG — Fast Optimal Instruction Selection and Tree Parsing”, SIGPLAN
Notices 27, 4 (April, 1992) 68-76). Eli will now also accept raw BURG specifications (file
type ‘.burg’), but we recommend that TP specifications be used instead because they are
easier to write and understand.

For a detailed treatment of tree parsers, see Tree Parsing.

Chapter 5: ModLib 11

5 ModLib

This chapter summarizes changes made to the Module Library. For more details, see Section
“top” in Specification Module Library: Abstract Data Types.

List-Module
A macro SingleTYPEList (e) has been added. It creates a singleton list from the element
e. In LIDO specifications it may be used e.g. in WITH clauses of CONSTITUENTS.

A function AddToOrderedSetTYPEList has been added. It adds an element to a list if
it is not yet in that list. In contrast to the function AddToSetTYPEList it is assumed that
the list is ordered increasingly.

LidoList-Module

A symbol role TYPEFilterListElem has been added. On list construction it may be used
instead of TYPEListElem in order to decide for each element whether it is to be inserted
into the list.

Chapter 6: Caution Needed in Specifying a Compiler 13

6 Caution Needed in Specifying a Compiler

The environment variable ELI_CC can be used to specify the C compiler that should be
used to compile user-provided and Eli-generated code. Specification of a C compiler in
this manner is considered to be “permanent”, so Eli assumes that the value of ELI_CC will
remain unchanged over the life of a cache. If you change the value of ELI_CC, you should
restart Eli with the eli -r command to reset the cache. Otherwise, Eli will mix object
code produced by the two compilers with unpredictable results.

You can also specify the C compiler to be used by means of the +cc parameter. That
specification holds only for the request containing it. Eli will guarantee that all of the object
code needed to satisfy that request was produced by the specified compiler. Successive
requests specifying different compilers will be handled correctly.

Index

Index
AddToOrderedSetTYPEList..................... 11
AddToSetTYPEList........coviiiiii ... 11
CONSTITUENTS . ..ottt et 11
FilterListElem...........couiiiinernnennnnnn. 11
FunnelWeb typesetters 3

15

L

At e e e, 3
latex2html.o 3
=D =3 5
LidoList-Module...........coviviinnuinnnnnnn. 11
List-Modulecoiiiiiiiii i 11
ListElem.oiie ettt 11
M

Module LidoLiSt ...cvvviineiie i 11
Module List.....coiiiiiii it 11
S

SingleTYPEList............ ...t 11

	New FunnelWeb Typesetter Support
	New token processor lexerr
	OIL
	Tree Parsing
	ModLib
	Caution Needed in Specifying a Compiler
	Index

