New Features of Eli Version 4.8

Uwe Kastens

University of Paderborn
D-33098 Paderborn
FRG

A. M. Sloane

Department of Computing
Division of Information and Communication Sciences
Macquarie University
Sydney, NSW 2109
Australia

W. M. Waite

Department of Electrical and Computer Engineering
University of Colorado
Boulder, CO 80309-0425
USA

$Date: 2013/04/07 00:23:42 $

Table of Contents

New Features of Eli Version 4.8................... 1
1 Refactored toplevel............................ 3
2 Support for parsers not generated by Eli..... 5
3 Shared library product......................... 7
4 Reporting file opening errors.................. 9

New Features of Eli Version 4.8 1

New Features of Eli Version 4.8

This document gives information about new facilities available in Eli version 4.8 and those
modifications made since the previous distributed Eli version 4.7 that might be of general
interest. Numerous corrections, improvements, and additions have been made without being
described here.

Chapter 1: Refactored top level 3

1 Refactored top level

The top level of the Eli system has been refactored to combine the primary input file open
operation with the tree-building operation. With this refactoring, the driver of an Eli-
generated processor first invokes a routine to parse the command line (see Section “top” in
Command Line Processing). It then executes any code supplied via ‘‘m’.init’ files (see
Section “Implementing Tree Computations” in LIDO — Computations in Trees).

At this point, the driver invokes the TREEBUILD routine. TREEBUILD opens the primary
input file, and uses the generated scanner and parser to build the abstract syntax tree. If
there were no reports above the WARNING severity level (see Section “Source Text Coordinates
and Error Reporting” in Library Reference), then the driver invokes the ATTREVAL routine
to perform the specified computation over the constructed tree. Finally, any code supplied
via ‘‘m’ .finl’ files is executed (see Section “Implementing Tree Computations” in LIDO
— Computations in Trees).

This refactoring allows one to replace TREEBUILD with any code that builds a tree con-
forming to some LIDO definition (see Section “Tree Construction Functions” in LIDO -
Reference Manual). That code will usually have its own input module, and may or may not
access command line parameters (see Section “Accessing the command line” in Command
Line Processor).

Chapter 2: Support for parsers not generated by Eli 5

2 Support for parsers not generated by Eli

Eli has the ability to generate a complete text processor, including all of the tree compu-
tation needed for contextual analysis. It assumes, however, that the input language can be
described by a reasonably consistent grammar. This is not the always the case, even for
programming languages, and it may be that more ad-hoc methods are needed to construct
a tree that describes the source text.

There are many tools other than Eli that one can use to create processors that scan and
parse text, and they differ among themselves in strategy and power. All support mechanisms
to build trees on the basis of the relationships implicit in the input text. Once the tree is
built, however, most systems provide no further aid. The user is responsible for writing
code in C or Java to process and transform the tree.

Eli now has the ability to interact with a scanner/parser developed using any arbitrary
technology (see Section “Using Foreign parsers” in Syntactic Analysis). For example, the
“foreign” analyzer might be a collection of C or C++ routines that could be defined by a
‘specs’ file and invoked by the main program that Eli generates. Alternatively, it might be
a main program that invokes a shared library to build and process the tree. In either case,
Eli can generate code to interact with it and automate the tedious job of constructing tree
computations.

Chapter 3: Shared library product 7

3 Shared library product

The :exe product is the executable file derived from the specifications, to be run on the
current machine (see Section “exe — Executable Version of the Processor” in Products
and Parameters). When Eli-generated code is only a part of a program created by other
means, it may be convenient to encode it as a shared library. This strategy could be used,
for example, to incorporate Eli-generated code into a Java program via the Java Native
Interface.

The :so product is a shared library file derived from the given specifications (see Section
“so — Shared library Version of the Processor” in Products and Parameters). A shared
library should not have a main program, and therefore it should be derived with the +nomain
opition (see Section “nomain — Omitting the main program” in Products and Parameters).

When a shared library is used, the program using it normally requires that the shared
library file have a specific name. Thus the :so product should be copied out of the cache
into a file with the appropriate name (see Section “Extracting and Editing Objects” in User
Interface). For example, suppose that we were deriving from ‘MyProc.fw’ and the required
name for the shared library file was ‘YourLib.so’. In that case, an appropriate derivation
request might be:

MyProc.fw +nomain :so > YourLib.so

Chapter 4: Reporting file opening errors 9

4 Reporting file opening errors

The format of a processor’s command line can be specified in clp (see Section “Command
Line Processor” in Command Line Processor). In addition to defining options and param-
eters, the designer can specify the form of an error report to be used when a file appearing
on the command line cannot be opened.

In earlier versions of Eli, this message was only written when the processor could not
open its primary input file. As a part of the refactoring to support foreign parsers, we
defined a routine ClpOpenError to output the report on request (see Section “Reporting
open errors” in Command Line Processor).

This report will be automatically made if the processor cannot open the file specified
on the command line as its primary source of data (see Section “Input parameters” in
Command Line Processor). User code can also make the report if it encounters an error
while opening an arbitrary file.

Index

Index

finlfiles. ... 3
dnit files. ..o 3
A

ATTREVAL 3
C

LD e 9
ClpOpenError ... 9
command line o i 3
command line processor.................ooooun. 9

file types: finl..... i 3
file types: dnit ... i 3
foreign parser............ ... oot 5

11
M
MAIN PIOGTAIM .« . .\ttt 7
N
013 00 1 1 A0S PP 7
P
primary input file........o 3
S
shared library..........o oL 5,7
o J P 7
T
TREEBUILD. 3

\%\%

WARNING error severityoooo.... 3

	New Features of Eli Version 4.8
	Refactored top level
	Support for parsers not generated by Eli
	Shared library product
	Reporting file opening errors
	Index

