
New Features of Eli Version 4.3

Uwe Kastens

University of Paderborn
D-33098 Paderborn

FRG

A. M. Sloane

Department of Computing
Division of Information and Communication Sciences

Macquarie University
Sydney, NSW 2109

Australia

W. M. Waite

Department of Electrical and Computer Engineering
University of Colorado
Boulder, CO 80309-0425

USA

$Revision: 3.7 $

i

Table of Contents

1 Specification Module Library 3
1.1 Name Analysis Library . 3
1.2 Abstract Data Types . 3
1.3 Property Library . 4
1.4 Solutions of Common Problems . 4

2 Lexical analysis . 5
2.1 Detecting lexical errors explicitly . 5
2.2 Scanning to, but not including, a newline . 5
2.3 Auxiliary scanner and token processor definitions 5
2.4 Processing NUL characters during lexical analysis 5

3 Definition table . 7

4 Oil . 9

5 Change in tree parser naming conventions . . 11

6 FunnelWeb . 13

7 Monitoring . 15
7.1 Monitoring products . 15
7.2 Main window command changes . 15
7.3 Trees . 15
7.4 Attributes . 16
7.5 File and handlers windows . 16
7.6 Monitoring user-defined types . 16
7.7 Configuring Noosa . 16

Index . 17

1

This document gives information about new facilities available in Eli version 4.3 and
those modifications made since the previous distributed Eli version 4.2 that might be of
general interest. Numerous corrections, improvements, and additions have been made with-
out being described here. They shall just help users to solve their problem without taking
notice of Eli’s mechanism.

Chapter 1: Specification Module Library 3

1 Specification Module Library

1.1 Name Analysis Library

Predefined Identifiers

The name analysis modules establish bindings of type Bind, which are triples of an identifier
code, a definition table key, and an environment. The modules used for predefinitions
PreDefine and PreDefId now provide three additional macros which allow to introduce
and initialize Bind variables for predefined entities: PreDefSymKeyBind, PreDefKeyBind,
and PreDefBind.

A C module PreDefMod is separated from the two predefinition modules. It provides
the two function PreDefine and PreDefineSym. They now can be used directly e.g. in
order to predefine entities in other environments than the outermost one. In that case
PreDefMod.specs is used instead of instances of the modules Predefine and PreDefId.
Existing uses of the Predefine and PreDefId are not affected by this modification.

Environment Module

Most of the macros that access components of structured values via pointers, e.g. IdnOf,
KeyOf, EnvOf, are changed into functions to avoid multiple execution of side-effects caused
by arguments of the macro calls.

1.2 Abstract Data Types

Lists in LIDO Specifications

In the module LidoList three alternative symbol roles are provided for tree nodes that
carry list elements in construction or distribution of lists. They have different effects in
cases where the element node can occur recursively in the tree. They handle the association
between list elements and attribute of tree nodes in pre-order, post-order, or ignore recursive
occurrences.

A condition attribute is introduced which decides at an element node whether it is
considered for the list. By overriding its computation skipping of list elements can be
controlled by non-trivial conditions.

Hence, the existing symbol role for that purpose, FilterListElem, is now outdated. It
may be removed in a future version.

Linear Lists of Any Type

A function AddToOrderedSet has been added to be used for ordered lists without duplicates,
which may implement sets.

A macro SingleList has been added especially to be used as the unary function of a
CONSTITUENTS WITH clause.

The above facilities are added to both modules List and PtrList

Bit Sets of Arbitrary Length

A macro ElemToBitSet has been added especially to be used as the unary function of a
CONSTITUENTS WITH clause.

4 New Features of Eli Version 4.3

1.3 Property Library

Map Objects to Integers

In the module ObjCnt the start value and the increment of the mapping can be modified
by overriding of attributes.

1.4 Solutions of Common Problems

Counting Symbol Occurrences

In the module Counter the start value and the increment of the mapping can be modified
by overriding of attributes.

Chapter 2: Lexical analysis 5

2 Lexical analysis

There have been several additions involving auxiliary scanners and token processors: a new
auxiliary scanner for reporting token errors, a header file defining the built-in auxiliary
scanners and token processors, and a consolidation of NUL character processing.

2.1 Detecting lexical errors explicitly

Normally the scanner reports a lexical error when an input character cannot be the first
character of any basic symbol. In other words, an error is signalled when the processor
knows nothing about an input character. Sometimes, however, it is appropriate to recognize
a specifc sequence of input characters as an invalid token.

A new auxiliary scanner called lexerr handles this situation. It reports that the scanned
character sequence is not a token. It does not alter the initial classification, and does not
compute a value. There is no source file for this token processor; it is a component of the
scanner itself, but its interface is exported so that it can be used by other modules.

2.2 Scanning to, but not including, a newline

The auxiliary scanner auxNoEOL extends the character sequence matched by the associated
pattern to the end of the current line, but does not include the terminating newline. It is
useful in situations where a token must begin at the beginning of a line, and therefore has
a regular expression whose first character is the newline. A token preceding token using
auxEol to extend to the end of a line would absorb the newline, thus making it impossible
to recognize the token beginning at the beginning of the next line.

2.3 Auxiliary scanner and token processor definitions

The header file ‘$elipkg/Scan/ScanProc.h’, containing definitions of all of the auxiliary
scanners available in the library, has been added. It should be included by any C program
that uses auxiliary scanners from the library.

2.4 Processing NUL characters during lexical analysis

All of the auxiliary scanners that scan over a newline now invoke auxNUL when they detect
an ASCII NUL just beyond that newline. An ASCII NUL just beyond a newline character
signals the end of the current source buffer, and an operation is needed to refill the buffer.
By invoking auxNUL whenever this condition arises, we have centralized the operation of
refilling the buffer at one point. This means that if a specification requires some special
action whenever the buffer is refilled, it can override auxNUL.

We strongly recommend that users adhere to this convention when they must write an
auxiliary scanner that must scan over a newline. Here is a typical code sequence for such a
scanner. The variable p is the scan pointer and start points to the beginning of the current
token:

if (*p == ’\0’) {

int current = p - start;

TokenStart = start = auxNUL(start, current);

p = start + current;

6 New Features of Eli Version 4.3

StartLine = p - 1;

if (*p == ’\0’) {

/* Code to deal appropriately with end-of-file.

* Some of the possibilities are:

* 1. Output an error report and return p

* 2. Simply return p

* 3. Move to another file and continue

***/

}

}

Chapter 3: Definition table 7

3 Definition table

A new operation called CloneKey is provided. It takes a single definition table key argu-
ment and returns a new key whose properties are initialised to the same values as the key
argument. Property values are shallow-copied.

Chapter 4: Oil 9

4 Oil

The OilList module provides computations that implement parameter lists and argument
lists for operator identification of function calls. The elements are arranged in left-to-right
order as they occur in the tree.

OilList is instantiated simply by mentioning its name:

$/oil/OilList.fw

It provides the computational roles ParameterListRoot, ParameterListElem, ArgumentList-
Root, and ArgumentListElem to support type analysis, the the roles ArgumentDeListRoot
and ArgumentDeListElem to support code generation.

The CLASS SYMBOL ParameterListElem is to be inherited by those SYMBOLs that
contribute parameter types to the parameter list. The value of the attribute ParameterLis-
tElem.GivenType (of type tOilType) must be set by the user.

The CLASS SYMBOL ParameterListRoot is to be inherited by a SYMBOL that has all
of the parameter SYMBOLs in its subtrees. The result of the computation is the attribute
ParameterListRoot.ParameterList of type tOilArgSig, which specifies all of the parameter
types. In order to obtain a complete signature for the function, the result type (ResType,
for example) must be added: OilAddArgSig(ResType, ParameterListRoot.ParameterList)

The CLASS SYMBOL ArgumentListElem is to be inherited by those SYMBOLs that
contribute arguments to the argument list. The value of the attribute ArgumentLis-
tElem.GivenType (of type tOilType) must be set by the user.

The CLASS SYMBOL ArgumentListRoot is to be inherited by a SYMBOL that has all
of the argument SYMBOLs in its subtrees. The result of the computation is the attribute
ArgumentListRoot.ArgumentList of type tOilSetSig, which specifies all of the argument
types. It can be used in a call to OilIdOpTSn to identify a function whose parameter types
could be the result of coercing the argument types.

The CLASS SYMBOL ArgumentDeListElem is to be inherited by those SYMBOLs that
contribute arguments to the argument list. The result of the computation is the attribute
ArgumentDeListElem.RequiredType of type tOilType, which specifies the type required by
the function for that argument.

The CLASS SYMBOL ArgumentDeListRoot is to be inherited by a SYMBOL that has
all of the argument SYMBOLs in its subtrees. The value of the attribute ArgumentDeList-
Root.Operator (of type tOilOp) must be set by the user.

Please note that it is not sensible to try to test the value of ArgumentDeLis-
tElem.RequiredType against the a priori type of the argument expression for the purpose
of error reporting. The reason is that if ArgumentDeListRoot.Operator is a valid operator
then there is no error, and if ArgumentDeListRoot.Operator is an invalid operator then
there is no information about the required types of the arguments.

Chapter 5: Change in tree parser naming conventions 11

5 Change in tree parser naming conventions

The conventions for naming types and routines created by the tree parser tp have been
changed to avoid confusion with other Eli components and to shorten some names:

1. The type name NODEPTR-TYPE has been replaced by TPNode

2. The prefix for all function names is now TP_ rather than burm_.

3. The name of the header file defining the prototypes of the generated functions is not
‘tp_gen.h’ rather than ‘xform.h’.

Chapter 6: FunnelWeb 13

6 FunnelWeb

The maximum number of lines in a FunnelWeb specification was increased to 65000.

Chapter 7: Monitoring 15

7 Monitoring

The Noosa system (invoked using the :mon product has undergone many changes since the
last release of Eli. Some relatively minor alterations have been made to the user interface.
Numerous internal changes were also made, many aimed at improving the speed of Noosa.

The following section summarise the major user visible changes. See the See Section
“top” in Execution Monitoring Reference, or the Noosa online help for more details.

7.1 Monitoring products

The :mondbx product for using Noosa in conjunction with Sun’s dbx debugger is no longer
supported. It was too hard to maintain and most users do not have access to this debugger
anyway.

The :mongdb product for debugging with GNU’s GDB is now fully supported and is
working (in contrast with the situation at the Eli 4.2 release). Also, the :mongdb prod-
uct now supports the +arg parameter for specifying the arguments to the program being
debugged.

The monitoring derivations now allow more than one +arg parameter.

7.2 Main window command changes

The Token command now also displays the names of non-literal tokens.

Many Noosa menus can now be "torn off" so that they stay on the screen. Also, the
Run, Continue and Kill commands now have keyboard accelerators Alt-r, Alt-c and Alt-k,
respectively.

The main Noosa text windows (input and transcript) can now be searched and saved to
files via the Noosa menu. The transcript can also be cleared.

The command to set event tracing filter regular expression now uses a popup dialog box.

7.3 Trees

The Noosa tree displays now come in four varieties: "just source" showing only the source
tree, "separated computed" where each computed tree is shown in a separate window,
"source and computed" where the source tree and computed trees are shown in the same
window, and "incremental" where all trees are displayed together in a style which allows
selective viewing.

All forms of tree display now support the Node command that allows you to go to the
"most relevant" node for a selected coordinate in the input text window. Note that this
command might not always produce expected results in the presence of computed trees
where the coordinate ranges of non-related nodes can overlap.

The tree displays now have commands that allow their contents (either whole or visible)
to be saved as PostScript.

16 New Features of Eli Version 4.3

7.4 Attributes

The tree displays now support two kinds of pop-up menu on the right mouse button. On
symbol names the menu gives the attributes of the symbol. On rule names the menu gives
attributes of the rule and terminal values that occur in that rule. In each case you can
express an interest in seeing the value of the attribute or terminal, with the option of
stopping execution when it is available.

Symbols and rules for which you have expressed an interest in one of their attributes are
highlighted by underlining rather than by the extra graphic that was previously used.

Many values of complex types can now be browsed once they have been displayed in
the transcript, including definition table keys, environments, PTG nodes, OIL types and
typesets, and syntax tree nodes (NODEPTRs).

7.5 File and handlers windows

The Windows menu contains a File command that can be used to create windows in which
you can edit arbitrary files.

The Handlers window in Noosa lets you set Tcl handlers for event types. There have
been many improvements including the ability to rename handlers, to disable/enable them
without deleting and to save them to files. Saved handlers can also be autoloaded.

7.6 Monitoring user-defined types

Eli now supports specifications of type ‘tcl’ containing Tcl code. If any of these files are
present in the user’s specifications they are concatenated in an undefined order and loaded
by Noosa on startup. Files supplied in this way can be used to provide extra monitoring
support. The most likely situation where this will be useful is to enable Noosa to browse
values of user-defined types. See the See Section “top” in Execution Monitoring Reference,
for full details on how to do this.

7.7 Configuring Noosa

Many things such as the sizes of Noosa’s windows and the colours used to highlight browsable
values and selected tree nodes can now be configured using X resources.

Index 17

Index

$
‘$elipkg/Scan/ScanProc.h’ 5

+
+arg and mongdb . 15

A
AddToOrderedSet . 3
ArgumentDeListElem . 9
ArgumentDeListRoot . 9
ArgumentListElem . 9
ArgumentListRoot . 9
Attribute monitoring and browsing 16
auxNoEOL . 5
auxNUL . 5

B
Bind . 3

C
CloneKey . 7
Counter . 4

E
Editing files in Noosa . 16
ElemToBitSet . 3
Environment Module . 3
Event tracing dialog box . 15

F
FunnelWeb . 13

L
lexerr . 5
LidoList . 3
Lines in a FunnelWeb file . 13
List . 3

M
mondbx is no longer supported 15

mongdb and +arg . 15
mongdb is now working . 15
Monitoring . 15
Multiple +arg parameters . 15

N
Node command . 15
Noosa . 15
Noosa handlers . 16
Noosa keyboard accelerators 15
Noosa searching and saving 15
Noosa tearoff menus . 15
Noosa tree displays . 15
Noosa X resources . 16

O
ObjCnt . 4

P
ParameterListElem . 9
ParameterListRoot . 9
Postscript output from tree displays 15
PreDefBind . 3
PreDefId . 3
PreDefine . 3
PreDefineSym . 3
PreDefKeyBind . 3
PreDefMod . 3
PreDefSymKeyBind . 3
PtrList . 3

S
Searching and saving Noosa text 15
SingleList . 3

T
Tcl specifications . 16
Token names in Noosa . 15

X
X resources for Noosa . 16

	Specification Module Library
	Name Analysis Library
	Abstract Data Types
	Property Library
	Solutions of Common Problems

	Lexical analysis
	Detecting lexical errors explicitly
	Scanning to, but not including, a newline
	Auxiliary scanner and token processor definitions
	Processing NUL characters during lexical analysis

	Definition table
	Oil
	Change in tree parser naming conventions
	FunnelWeb
	Monitoring
	Monitoring products
	Main window command changes
	Trees
	Attributes
	File and handlers windows
	Monitoring user-defined types
	Configuring Noosa

	Index

