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Syntactic Analysis

The purpose of syntactic analysis is to determine the structure of the input text. This
structure consists of a hierarchy of phrases, the smallest of which are the basic symbols and
the largest of which is the sentence. The structure can be described by a tree with one node
for each phrase. Basic symbols are represented by values stored at the nodes. The root of
the tree represents the sentence.

This manual explains how to use a ‘. con’ specification to describe the set of all possible
phrases that could appear in sentences of a language. It also discusses methods of resolving
ambiguity in such descriptions, and how to carry out arbitrary actions during the recognition
process itself. The use of ‘. perr’ specifications to improve the error recovery of the generated
parser is described as well.

Computations over the input can be written with attribute grammar specifications that
are based on an abstract syntax. The abstract syntax describes the structure of an abstract
syntax tree, much the way the concrete syntax describes the phrase structure of the input.
Eli uses a tool, called Maptool, that automatically generates the abstract syntax tree based
on an analysis of the concrete and abstract syntaxes and user specifications given in files
of type ‘.map’. This manual will describe the rules used by Maptool to determine a unique
correspondence between the concrete and abstract syntax and the information users can
provide in ‘.map’ files to assist in the process.

This manual will also discuss how Maptool makes it possible to only partially specify
the concrete and abstract syntaxes, as long as together they specify a complete syntax.

Although Maptool simplifies the task of relating the phrase structure of a language to
the abstract syntax on which a computation is based, it is cometimes necessary to use
a parser that was not generated by Eli to analyze phrase structure. In that case, the
relationship between phrase structure and abstract syntax must be embedded in a hand-
coded tree construction module. The last section of this manual explains how such a
module is implemented, and describes the way in which Eli supports that implementation
and manages its integration with the generated tree computations.
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1 Context-Free Grammars and Parsing

A context-free grammar is a formal system that describes a language by specifying how any
legal text can be derived from a distinguished symbol called the axiom, or sentence symbol.
It consists of a set of productions, each of which states that a given symbol can be replaced
by a given sequence of symbols. To derive a legal text, the grammar is used as data for the
following algorithm:

1. Let text be a single occurrence of the axiom.

2. If no production states that a symbol currently in text can be replaced by some
sequence of symbols, then stop.

3. Rewrite text by replacing one of its symbols with a sequence according to some pro-
duction.

4. Go to step (2).

When this algorithm terminates, text is a legal text in the language. The phrase structure
of that text is the hierarchy of sequences used in its derivation.

Given a context-free grammar that satisfies certain conditions, Eli can generate a parsing
routine to determine the derivation (and hence the phrase structure) of any legal text. This
routine will also automatically detect and report any errors in the text, and repair them
to produce a correct phrase structure (which may not be that intended by the person who
wrote the erroneous text).

1.1 How to describe a context-free grammar

Each production of a context-free grammar consists of a symbol to be replaced and the
sequence that replaces it. This can be represented in a type-‘con’ file by giving the symbol
to be replaced, followed by a colon, followed by the sequence that replaces it, followed by a
period:

Assignment: Variable ’:=’ Expression.
StatementList:
Statement:

’if’ Expression ’then’ Statement
’else’ Statement.

The first production asserts that the symbol Assignment can be replaced by the sequence
consisting of the three symbols Variable, ’:=’, and Expression. Any occurrence of the
symbol StatementList can be replaced by an empty sequence according to the second
production. In the third production, you see that new lines can be used as separators in the
description of a production. This notation is often more commonly referred to as Backus
Naur Form, or just BNF.

Symbols that are to be replaced are called nonterminals, and are always represented by
identifiers. (An identifier is a sequence of letters and digits, the first of which is a letter.)
Every nonterminal must appear before a colon in at least one production. The axiom is a
nonterminal that appears before the colon in exactly one production, and does not appear
between the colon and the period in any production. There must be exactly one nonterminal
satisfying the conditions for the axiom.
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Symbols that cannot be replaced are called terminals, and may be represented by either
identifiers or literals. (A literal is a sequence of characters bounded by apostrophes (’).
An apostrophe appearing within a literal is represented by two successive apostrophes.)
No terminal may appear before a colon in any production. Terminals represent character
strings that are recognized by the lexical analyzer (see Section “Specifications” in Lexical
Analysis).

Extended BNF allows the use of certain operators on the right hand side of a produc-
tion. These operators are designed to be short-hands to simplify the grammar description.
Rules with extended BNF operators can be translated into rules which use only the strict
BNF constructs described so far. While the use of extended BNF constructs is supported
for the concrete syntax description in Eli, only strict BNF constructs are allowed in the
abstract syntax. When it comes time to deduce the correspondence between the concrete
and abstract syntax, Maptool operates on the abstract syntax and a version of the concrete
syntax in which all rules containing extended BNF constructs have been translated into
equivalent strict BNF rules.

The remainder of this section is devoted to describing how each of the extended BNF
constructs are translated to their strict BNF equivalents. Note that most of the EBNF
constructs require the introduction of generated symbols for their strict BNF translation.
Users are strongly discouraged from using these constructs in instances where attribution
is required for those contexts, because changes in the grammar will change the names of
the generated symbols used.

The most appropriate use of EBNF constructs that introduce generated symbols is when
matching the LIDO LISTOF construct, since the LISTOF construct makes no assumptions
about the phrase structure of the list. For a description of the LISTOF construct, see Section
“Productions” in LIDO - Reference Manual.

When a grammar contains many productions specifying replacement of the same non-
terminal, a slash, denoting alternation can be used to avoid re-writing the symbol being
replaced:

Statement:
Variable ’:=’ Expression /
’if’ Expression ’then’ Statement ’else’ Statement /
’while’ Expression ’do’ Statement .

This alternation specifies three productions. The nonterminal to be replaced is
Statement in each case. Possible replacement sequences are separated by slashes (/). The
strict BNF translation for the above example is:

Statement: Variable ’:=’ Expression .
Statement: ’if’ Expression ’then’ Statement ’else’ Statement
Statement: ’while’ Expression ’do’ Statement .

Alternation does not introduce any generated symbols and has a very straight-forward
translation. As a result, it is the most heavily used of the EBNF constructs.

Square brackets are used to denote that the set of symbols enclosed by the brackets are
optional. In the following example, Constants and Variables are optional, but Body is
not:

Program: [Constants] [Variables] Body .
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The strict BNF translation of this construct is to generate a rule for each possible
permutation of the right hand side. In the case of the above example, the following four
rules would result:

Program: Body .

Program: Variables Body .

Program: Constants Body .

Program: Constants Variables Body .

While the translation doesn’t introduce any generated symbols, indiscriminate use of
this construct may lead to less readable specifications.

An asterisk (or star) is used to denote zero or more occurrences of the phrase to which
it is applied. In the following example, Program consists of zero or more occurrences of
Variable followed by Body:

Program: Variable* Body .

The strict BNF translation of this construct requires the introduction of a generated
symbol. Generated symbols begin with the letter G and are followed by a unique number.
Generated symbols are chosen to not conflict with existing symbols in the concrete syntax.
No check is performed to ensure that the generated symbols do not conflict with symbols
in the abstract syntax, so users should avoid using symbols of this form in their abstract
syntax. The translation for the above example is as follows:

Program: G1 Body .
Gl: G1 Variable .
G1:

A plus is used to denote one or more occurrences of the phrase to which it is applied. In
the following example, Program consists of one or more occurrences of Variable followed
by Body:

Program: Variable+ Body .

The strict BNF translation of this construct is similar to the translation of the asterisk
(see (undefined) [Asterisk], page (undefined)). The translation for the above example is as
follows:

Program: G1 Body .
Gl: G1 Variable .
Gl: Variable .

A double slash is used to denote one or more occurrences of a phrase separated by
a symbol. In the following example, Input is a sequence of one or more Declaration’s
separated by a comma:

Input: Declaration // ’,’
The strict BNF translation for the above example is as follows:
Input: G1
Gl: G2 .
Gi: G1 ’,’” G2 .
G2: Declaration .
Note that all of the EBNF constructs, except the single slash (for alternation) have
higher precedence than the separator construct.
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Parentheses are used to group EBNF constructs. This is used primarily to apply other
EBNF operators to more than a single symbol. For example:
Program: (Definition Use)+ .

In this example, we want to apply the Plus operator to the concatenation of a Definition
and a Use. The result denotes one or more occurrences of Definition’s followed by Use’s.
The strict BNF translation for the above is:

Program: G2 .

Gl: Definition Use .
G2: G1

G2: G2 G1

This is identical to the translation for the Plus operator operating on a single symbol,
except that another generated symbol is created to represent the parenthetical phrase.

Note that a common error is to introduce parentheses where they are not needed. This
will result in the introduction of unexpected generated symbols.

1.2 Using structure to convey meaning

A production is a construct with two components: the symbol to be replaced and the
sequence that replaces it. We defined the meaning of the production in terms of those
components, saying that whenever the symbol was found in text, it could be replaced
by the sequence. This is the general approach that we use in defining the meaning of
constructs in any language. For example, we say that an assignment is a statement with
two components, a variable and an expression. The meaning of the assignment is to replace
the value of the variable with the value resulting from evaluating the expression.

The context-free grammar for a language specifies a “component” relationship. Each
production says that the components of the phrase represented by the symbol to be replaced
are the elements of the sequence that replaces it. To be useful, the context-free grammar
for a language should embody exactly the relationship that we use in defining the meanings
of the constructs of that language.

1.2.1 Operator precedence

Consider the following expressions:

A+BxC
(A+B) xC

In the first expression, the operands of the addition are the variable A and the product of
the variables B and C. The reason is that in normal mathematical notation, multiplication
takes precedence over addition. Parentheses have been used in the second expression to
indicate that the operands of the multiplication are the sum of variables A and B, and the
variable C.

The general method for embodying this concept of operator precedence in a context-free
grammar for expressions is to associate a distinct nonterminal with each precedence level,
and one with operands that do not contain “visible” operators. For our expressions, this
requires three nonterminals:

Sum An expression whose operator is +
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Term An expression whose operator is *
Primary  An expression not containing “visible” operators

The productions that embody the concept of operator precedence would then be:

Sum: Sum ’+’ Term / Term.
Term: Term ’*’ Primary / Primary.
Primary: ’(’ Sum ’)’ / Identifier.

1.2.2 Operator associativity

Consider the following expressions:

A-B-C
A xx B xx C
A<BX<C

Which operator has variable B as an operand in each case?

This question can be answered by stating an association for each operator: If - is “left-
associative”, then the first expression is interpreted as though it had been written (A-B)-C.
Saying that ** is “right-associative” means that the second expression is interpreted as
though it had been written Ax*(B*xC). The language designer may wish to disallow the
third expression by saying that < is “non-associative”.

Association rules are embodied in a context-free grammar by selecting appropriate non-
terminals to describe the operands of an operator. For each operator, two nonterminals
must be known: the nonterminal describing expressions that may contain that operator,
and the nonterminal describing expressions that do not contain that operator but may be
operands of that operator. Usually these nonterminals have been established to describe
operator precedence. Here is a typical set of nonterminals used to describe expressions:

Relation An expression whose operator is < or >

Sum An expression whose operator is + or -
Term An expression whose operator is * or /
Factor An expression whose operator is **

Primary  An expression not containing “visible” operators

The association rules discussed above would therefore be expressed by the following
productions (these are not the only productions in the grammar):

Sum: Sum ’-’ Term.
Factor: Primary ’**’ Factor.
Relation: Sum ’<’ Sum.

The first production says that the left operand of - can contain other - operators, while the
right operand cannot (unless the subexpression containing them is surrounded by parenthe-
ses). Similarly, the right operand of ** can contain other ** operators but the left operand
cannot. The third rule says that neither operand of < can contain other < operators.
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1.2.3 Scope rules for declarations

Identifiers are normally given meaning by declarations. The meaning given to an identifier
by a particular declaration holds over some portion of the program, called the scope of that
declaration. A context-free grammar for a language should define a phrase structure that
is consistent with the scope rules of that language.

For example, the declaration of a procedure P within the body of procedure Q gives
meaning to the identifier P, and its scope might be the body of the procedure Q. If P
has parameters, the scope of their declarations (which are components of the procedure
declaration) is the body of procedure P.

Now consider the following productions describing a procedure declaration:

procedure_declaration: ’procedure’ procedure_heading procedure_body.
procedure_heading:
ProcIdDef formal_parameter_part ’;’ specification_part.

Notice that the phrase structure induced by these productions is inconsistent with the
postulated scope rules. The declaration of P (ProcIdDef) is in the same phrase (procedure_
heading) as the declarations of the formal parameters. This defect can be remedied by a
slight change in the productions:

procedure_declaration: ’procedure’ ProcIdDef ProcRange.
ProcRange:
formal_parameter_part ’;’ specification_part procedure_body.

Here the formal parameters and the body have both been made components of a single
phrase (ProcRange), which defines the scope of the formal parameter declarations. The
declaration of P lies outside of this phrase, thus allowing its scope to be differentiated from
that of the formal parameters.
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2 The Relationship Between Phrases and Tree
Nodes

RULE declarations in files of type ‘lido’ describe the structure of the abstract syntax tree
over which computations are performed. Eli will create a routine to construct an abstract
syntax tree if any tree computations are specified (see Section “Tree Structure” in LIDO
Computations in Trees). In order to do this, Eli must be able to deduce a unique correspon-
dence between the concrete and abstract syntaxes, such that for each rule in the concrete
syntax it is possible to uniquely determine what abstract syntax tree fragment to build.
The tool within Eli that does this is called Maptool. In addition to generating a routine
to construct the abstract syntax tree, Maptool will also deduce complete versions of the
concrete and abstract syntaxes if only incomplete versions of each are provided by the user.
This can only be done if the two syntaxes can together form a complete syntax.

The concrete syntax is provided by the user in files of type ‘con’. Since EBNF constructs
are allowed in these files, they are first translated into their strict BNF equivalents before
being processed by Maptool (see (undefined) [EBNF], page (undefined)). The abstract
syntax is extracted from the RULE declarations made in files of type ‘lido’ (see Section
“Rule Specifications” in LIDO - Reference Manual).

The remainder of this section will discuss how Maptool deduces the correspondence
between the two syntaxes, the use of files of type ‘map’ to influence the mapping process,
and some usage hints.

2.1 Syntax mapping process

Maptool begins by matching any LISTOF constructs that appear in the abstract syntax to
any appropriate concrete rules. The next phase examines each concrete rule not matched
in the previous phase and tries to find a matching abstract syntax rule. After all matching
is complete, unmatched concrete rules are added to the abstract syntax and unmatched
abstract rules are added to the concrete syntax. There are a few exceptions to this as are
noted in the remainder of this section.

While the most obvious benefit to having Maptool deduce syntax fragments from one
syntax and place them in the other is to reduce the amount of typing required, the more
important advantage is the support it gives for incremental development. It allows the user
to only specify those portions of the syntax with which they are concerned at the moment.

2.1.1 Chain rule definitions

Chain rules have different behavior than other rules during the matching process. Descrip-
tions for three different kinds of chain rules are given here to assist in the explanations given
in the remainder of this section:

Chain Rule
A normal chain rule is a rule in which there is exactly one symbol on the right
hand side of the rule that is not equivalent to the left hand side. For example,
‘X ::=Y where X is not equivalent to Y is a chain rule.

Trivial Chain Rule
A trivial chain rule is a chain rule in which the left hand side is equivalent to
the right hand side. This typically happens when a symbolic equivalence class
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is defined that includes both the left hand side symbol and the right hand side
symbol (see Section 2.2.1 [Symbol Mapping], page 12).

Literal Chain Rule
A literal chain rule is similar to a trivial chain rule, except that it also has literal
symbols on its right hand side. A typical example of this is the rule ‘Expr ::=
1) (; Expr )) )7.

Based on the above definition for normal chain rules, we define coercions between sym-
bols. A symbol X can be coerced to a symbol Y if there is a chain rule with X on the right
hand side and Y on the left hand side. Coercions are also transitive. If X is coercible to Y
and Y is coercible to Z, then X is also coercible to Z. A symbol is also considered coercible
to itself.

2.1.2 Matching the LISTOF construct

The LISTOF construct denotes zero or more occurrences of the elements that appear on its
right hand side. It does not dictate the ordering of those right hand side symbols or any
delimiters that may be used to separate them. The ordering and delimiters are determined
by concrete rules. In simple terms, Maptool begins with the left hand side of the LISTOF and
recursively matches rules until it finds the right hand side elements. The next paragraph
gives a more precise description.

An abstract LISTOF construct is matched by starting with the symbol on the left hand
side of the LISTOF. All concrete rules with equivalent left hand side symbols are added
to the set of matched rules. For each rule added to the set, the right hand side symbols
are examined. Of these symbols, literal symbols are ignored. If terminal symbols are
encountered that aren’t coercible to the symbols appearing on the right hand side of the
LISTOF, an error is signalled, because the left hand side of the LISTOF may not derive
symbols other than those that appear on the right hand side. For each nonterminal symbol
that isn’t coercible to one of the right hand side symbols, the concrete rules that have that
symbol on their left hand side are added to the set. The process continues until no more
rules can be added to the set.

The intermediate nonterminal symbols that are encountered as new concrete rules are
added to the set may not appear on the right hand side of other concrete rules.

If Maptool doesn’t find any concrete rules to match a LISTOF, it will generate a canonical
left recursive representation. For the list:

RULE: Program LISTOF Declaration | Statement END;
Maptool would generate the following:

Program: LST_Program .

LST_Program: LST_Program Declaration .
LST_Program: LST_Program Statement .
LST_Program:

This specifies zero or more occurrences of Declaration’s and Statement’s.
There is one other important thing to note about the LISTOF construct. Attribute
computations associated with a LISTOF construct can just as easily be written as symbol

computations on the symbols of the LISTOF. The advantage to using the LISTOF construct
is that it becomes possible to generate an abstract syntax tree structure which allows for
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more efficient traversal. In order to construct this special tree structure, it is sometimes
necessary to insert an additional chain rule into the concrete syntax at the root of the
LISTOF.

This is the case when the rules matching the LISTOF have a recursive occurrence of the
left hand side symbol. As an example, the LISTOF construct shown above might be written
as follows in the concrete syntax:

Program: Program Declaration .
Program: Program Statement .
Program:

As you can see, the root of the LISTOF, Program is used both on the left hand side and
right hand side of rules that match the LISTOF construct, meaning that it is used recursively.
If the LISTOF construct is provided in a ‘.1ido’ file, Maptool must introduce the chain rule
‘Program ::= LST_Program’ and change other occurrences of Program to LST_Program in
order to build the efficient tree structure.

Users should be aware that it is possible for the addition of this chain rule to cause
LALR(1) conflicts for the parsability of the concrete syntax that do not appear in the
absence of the LISTOF construct. In these cases, users must either rewrite the concrete
syntax or avoid the use of the LISTOF construct to avoid the problem.

2.1.3 Matching remaining rules

After all LISTOF constructs have been matched, Maptool attempts to match the remaining
concrete rules to rules given in the abstract syntax. A match is determined if the signa-
ture of the concrete rule is equivalent to the signature of an abstract rule or coercions (see
Section 2.1.1 [Chain Rules|, page 9) exist between any symbols which differ in the signa-
tures. Remember that symbolic equivalence classes are applied to concrete rules before this
matching takes place, so symbols in the signatures are considered equivalent if they belong
to the same equivalence class.

For example, consider the following abstract rules:

RULE: Declaration ::= IdDef Type END;
RULE: IdDef ::= Identifier END;

The following concrete rule will match the first of the above abstract rules, because of
the coercion defined between Identifier and IdDef:

Declaration: Identifier Type .

The reason for doing this is to distinguish semantically between occurrences of
Identifier’s in different contexts. In the above example, we have used IdDef to represent
a definition of an Identifier. In another place in the grammar, we may want to refer to
uses of identifiers instead and use the symbol IdUse. Note that use of chain rules in the
manner just described makes it impossible to perform attribute computations during tree
construction (see Section 2.4.2 [Constraints|, page 15).

It is possible for Maptool to detect multiple possible matching abstract rules for a single
concrete rule. Maptool signals an error in this case that must be fixed by changing the
grammar to disambiguate the contexts.
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2.1.4 Complete generated concrete and abstract syntaxes

After rule matching is complete, unmatched concrete rules, except trivial chain rules and
literal chain rules (see Section 2.1.1 [Chain Rules|, page 9) are added to the abstract syntax.
The reason for this is that trivial chain rules are meaningless in the abstract syntax and
literal chain rules are only meaningful if they have attribute computations associated with
them, in which case they would already have been specified as part of the abstract syntax.

Sometimes it is desirable to include literal chain rules in the abstract syntax even when
the user has not explicitly included them there. A typical situation where this occurs is
when generating output conforming to the concrete syntax using the Idem tool (see Section
“Textual unparser” in Abstract Syntax Tree Unparsing). In this situation the output must
contain all literals hence the literal chain rules must be in the abstract syntax so that Idem
can generate output patterns for them. To preserve the literal chain rules in the abstract
syntax use the MAPCHAINS keyword in a specification (see Section 2.2.3 [Mapping Chain
Rules|, page 14).

Unmatched abstract rules are included in the concrete syntax except in the following
instances:

e The rule is a chain rule whose left hand side is not a symbol in the concrete syntax.
Adding the rule to the concrete syntax in this case would cause the concrete syntax to
be disconnected.

e The rule can only be part of a computed subtree (see Section “Computed Subtrees”
in LIDO - Reference Manual). This is true if the rule is only reachable from the root
symbol if symbols preceded by a $ are included.

Users can use the :consyntax product (see Section “consyntax” in Products and Pa-
rameters) to view the complete version of the concrete syntax.

The :abstree product (see Section “abstree” in Products and Parameters) is used to
view the complete abstract tree grammar. The :absyntax product (see Section “absyntax”
in Products and Parameters) by contrast only shows the abstract syntax rules which are
not part of computed subtrees.

2.2 User mapping specifications

Files of type ‘map’ can be provided by the user to influence the way in which certain rules
are matched. The syntax of map files can be found with other grammar description towards
the end of this document (see Appendix A [Grammars|, page 41).

There are currently three ways in which the mapping can be affected. The first are
symbolic equivalence classes, which group together symbols that have the same semantic
meaning. The second method is to map specific rules. Using this method, concrete rules
can be rewritten and/or reordered to match a specific abstract rule. The third method
controls the elimination of literal chain rules.

2.2.1 Specifying symbolic equivalence classes

Symbolic equivalence classes are used to group together symbols appearing in the concrete
syntax because the semantics of the symbols are equivalent. As a result, a single symbol can
be used to represent all of the members of the symbolic equivalence class in the abstract
syntax. This representative symbol can either be one of the concrete symbols or a new
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symbol altogether. Symbolic equivalence classes are specified in files of type ‘map’. A series
of symbolic equivalences must be preceded by the keyword MAPSYM. An equivalence class
is then specified by giving the representative symbol (the symbol to appear in the abstract
syntax), followed by ::= and the list of symbolically equivalent symbols from the concrete
syntax terminated by a period. For example, the following specification says that a Primary,
Factor, and Expr belong to the same equivalence class:

MAPSYM
Expr ::= Primary Factor .

Application of symbolic equivalence classes to rules in the concrete syntax is done before
the matching process begins. Symbolic equivalence classes can only be created for symbols
which are either all nonterminals or all terminals (see Section 1.1 [Notation|, page 3).
An error message will also be issued if a symbolic equivalence class specification includes
abstract syntax symbols on the right hand side, since each abstract syntax symbol represents
its own equivalence class.

For backward compatibility with previous releases of Eli, symbolic equivalence classes
may also be specified in files of type ‘sym’.

2.2.2 Specifying rule mappings

Rule mapping allows users to rewrite a concrete rule for the purposes of matching it to a
specific abstract rule. This is useful in cases where two syntactically different constructs are
semantically equivalent. Consider the following expression language with bound identifiers:

Computation: LetExpr / WhereExpr .
LetExpr: ’let’ Definitions ’in’ Expr .
WhereExpr: Expr ’where’ Definitions .

In this example, LetExpr and WhereExpr are semantically equivalent constructs, but the
ordering of Definitions and Expr are reversed and they use different literal symbols. We’d
like to only specify the semantic computations for the two constructs once. To do this, we
can define a symbolic equivalence class for LetExpr and WhereExpr:

MAPSYM
BoundExpr ::= LetExpr WhereExpr .

The abstract rule that we can use to represent the two constructs is:
RULE: BoundExpr ::= Definitions Expr END;

Finally, we must use rule mapping specifications to rewrite the two concrete rules to
match the abstract rule:

MAPRULE
LetExpr: ’let’ Definitions ’in’ Expr < $1 $2 > .
WhereExpr: Expr ’where’ Definitions < $2 $1 > .

The keyword MAPRULE precedes a group of rule mapping specifications in the map file.
Each rule mapping begins with the concrete rule to be rewritten followed by its rewritten
form in angle brackets. In angle brackets, nonliteral symbols appear as positional param-
eters. A positional parameter is specified with a $ followed by a number indicating which
nonliteral symbol from the concrete rule is to be used. Any literal symbols may also appear
between the angle brackets.
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An abstract syntax will sometimes have several rules with different names but identical
signatures. For example, consider the case where dyadic expressions are represented by
abstract rules that do not contain operators:

RULE Add: Expression ::= Expression Expression END;
RULE Mul: Expression ::= Expression Expression END;

In this case, the rule mapping must specify the abstract rule name explicitly in order to
disambiguate the pattern match:

MAPRULE
Expression: ’(’ Expression ’+’ Expression ’)’ < $1 $2 >: Add .
Expression: ’(’ Expression ’*’ Expression ’)’ < $1 $2 >: Mul .

Rule names are optional, and may be omitted when the pattern match is unambiguous (as
in the bound variable example).

When rule matching proceeds, the concrete rule is seen in its rewritten form. An abstract
syntax rule must exist in a LIDO specification that corresponds to the rule mapping speci-
fication given. Note that the use of rule mapping makes it impossible to perform attribute
computations during tree construction (see Section 2.4.2 [Constraints|, page 15).

2.2.3 Preserving literal chain rules

The mapping process normally does not include literal chain rules in the complete abstract
syntax unless they appear in the user-supplied abstract syntax (see Section 2.1.4 [Comple-
tion], page 12). Sometimes it is desirable to preserve literal chain rules even if the user has
not included them in the abstract syntax. To force literal chain rules to be included in the
abstract syntax, use the MAPCHAINS keyword. The behavior is unchanged if all literal chain
rules already appear in the abstract syntax.

Care should be taken when using MAPCHAINS in conjunction with attribution. A specifi-
cation using this keyword may require more attribution than the same specification without
it, because it may be necessary to transfer attribute values from the child to the parent or
vice versa. The presence of symbol computations for the symbols occurring in the chain
rules without the transfer computations just mentioned may result in incorrect attribution
without warning.

2.3 Influences of BOTTOMUP specifications on mapping

The generation of the parsing grammar (the input to the parser) may be influenced by
BOTTOMUP specifications (see Section “Computations” in LIDO - Reference Manual) specified
in your attribute grammar. This is because the parsing grammar must ensure that the nodes
of the abstract syntax tree are constructed in a particular order in the presence of BOTTOMUP
constraints.

In order to deal with this, Maptool must sometimes inject generated chain rules into
the parsing grammar to which tree building actions can be attached. These injected chain
rules may cause the parsing grammar to exhibit LALR(1) conflicts. If so, an error will be
reported to indicate that the BOTTOMUP constraints you have provided cause your grammar
to not be parsable.
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In trying to resolve such a conflict, it is useful to use the :pgram derivation (see Section
“pgram” in Products and Parameters) to be able to view the parsing grammar that is
submitted to the parser generator and contains the injected chain rules. It is also useful to
use the :0rdInfo derivation to get more information about how BOTTOMUP constraints were
introduced for specific rules. Approaches to resolving such a problem include eliminating
unnecessary BOTTOMUP constraints from the attribute grammar or making changes to the
concrete syntax that allow the chain rules to be injected without causing LALR(1) conflicts.

2.4 Syntax development hints

This section begins by describing typical patterns of syntax development. This is followed by
two more specific examples of how to use the mapping techniques described in the previous
sections.

2.4.1 Typical patterns of syntax development

When developing a translator for an existing language, the complete concrete syntax is
typically already available. In these cases, it is advantageous to start with the complete
concrete syntax and add symbolic equivalences and rule mapping specifications to suit the
attribute computations as they are being developed.

On the other hand, when designing a new language, it is easier to start work by specifying
attribute computations and adding concrete syntax rules as necessary to resolve issues of
precedence, associativity, and other parsing ambiguities.

When errors relating to the syntax appear, it is strongly recommended that the first
course of action be to look at the complete generated versions of the syntaxes by using the
:consyntax, :absyntax, and :abstree products (see Section “Specifications” in Products
and Parameters). Very often these problems are simply a result of not correctly anticipating
the matching process.

2.4.2 Constraints on grammar mapping

The LIGA attribute grammar system allows users to specify that the first pass of computa-
tions are to be performed as the abstract syntax tree is being built. This is specified either
by an option given in a LIGA control specification see Section “Order Options” in LIGA
Control Language or by using an additional keyword in an attribute grammar computation
see Section “Computations” in LIDO - Reference Manual.

Combining computations with tree construction, however, requires that the tree be con-
structed in strict left-to-right and bottom-to-top order. In the presence of more advanced
grammar mappings, it is not possible to maintain this strict ordering. For this reason,
Maptool generates the LIGA control directive:

ORDER: TREE COMPLETE ;

when it detects that one of these grammar mappings is required. The control directive
indicates that the tree should be constructed completely before any computations take
place.

The grammar mappings which cause Maptool to emit these directives are the use of
chain rules in the abstract syntax that do not exist in the concrete syntax (see Section 2.1.3
[Rule Matching], page 11) and any use of rule mapping (see Section 2.2.2 [Rule Mapping],

page 13). Aside from symbolic mappings (see Section 2.2.1 [Symbol Mapping], page 12)
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and the use of LISTOF constructs, the generated concrete and abstract syntaxes need to
be identical in order to allow computations to take place during tree construction.

2.4.3 Abstracting information from literals

Literal terminals often distinguish phrases whose structures are identical except for the
particular literal terminal. For example, in a normal arithmetic expression the phrase
describing addition and the phrase describing subtraction are identical except for the literal
+ or -. Taking nonterminal equivalence classes into account, it may be that all phrases
representing operations with two operands are identical except for the operator literal.

When phrases have identical structure except for one or more literals, the tree computa-
tions carried out at the nodes corresponding to those phrases are often identical except for
some parameter that depends on the particular literal. It is then useful to abstract from the
distinct literals, obtaining a single phrase with which to associate the computation and a
set of phrases with which to associate the parameter evaluation. The key point here is that
in many cases the computation will apply to a wide variety of translation problems, whereas
the particular set of literals characterizes a single translation problem. By abstracting from
the distinct literals, the computation can be reused.

To abstract from a specific literal, simply replace that literal with a nonterminal and
add a production that derives the literal from that nonterminal. This added production
represents the phrase with which the parameter evaluation would be associated. The com-
putation for the phrase in which the literal was replaced by the nonterminal will now obtain
the parameter value from the corresponding child, rather than evaluating it locally.

2.4.4 Mapping expressions for overload resolution

It is quite common for a single operator to have different meanings that depend on the
types of its operands. For example, in Pascal the operator + might mean integer addition,
real addition or set union. There are well-known techniques for deciding what is meant in
a particular context, and these techniques depend only on the particular set of operators
and operand types. The computations themselves are parameterized by this information
(see Section “Selecting an operator at an expression node” in Type Analysis).

In order to reuse the tree computation to resolve overloading, abstract from the partic-
ular set of literals that represent the operators of the language. Then define equivalence
classes in which every nonterminal representing an expression is replaced by Expr and every
nonterminal representing an operator by Op. Finally, associate the appropriate computa-
tions with the following rules:

Expr: Expr Op Expr.
Expr: Op Expr.
Expr: Identifier.
Expr: Integer.

(Here ... indicates rules for other denotations, such as floating-point numbers, true, etc.,
defined in the language.)

As an example of the process, consider a language with integer and Boolean expressions
in the style of Pascal.
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The literals that represent operators in this language are +, -, *, /, div, mod, and, or
and not. Define a new nonterminal for each precedence level of the dyadic operators, one
for the unary arithmetic operators, and one for not:

Addop: ’+’ / ’=’ / ’or’

Mulop: ’x*’ / */? / ’div’ / ’mod’ / ’and’

Sign: ’+’ / ’=?

Notop: ’mot’
These productions abstract from the literals, and embody the information about the prece-
dence and association (all operators are left-associative) needed to determine the phrase
structure.

Using these new nonterminals, define the phrase structure of an expression:

SimpleExpression: Sign Sum / Sum .

Sum: Sum Addop Term / Term .

Term: Term Mulop Factor / Factor .

Factor: Notop Factor / Primary .

Primary: Integer / Id / ’true’ / ’false’ / ’(’ SimpleExpression ’)’
(Here Integer is a terminal representing arbitrary digit sequences and Id is a terminal
representing arbitrary identifiers. These symbols will be recognized by the lexical analyzer.)

All of the dyadic operators fall into the same equivalence class, which should be rep-
resented by the symbol Binop. Sign and Notop both belong to the Unop class, and
SimpleExpression, Sum, Term, Factor, Primary are in the Expr class. Here is a type-
‘map’ file defining these classes:

MAPSYM
Op ::= Addop Mulop Sign Notop .
Expr ::= SimpleExpression Sum Term Factor Primary .
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3 How to Resolve Parsing Conflicts

Eli attempts to construct a particular kind of parser from the context-free grammar specify-
ing the desired phrase structure. If this attempt fails, Eli reports that failure by describing
a set of conflicts. In order to understand what these conflicts mean, and to understand how
they might be resolved, it is necessary to have a rudimentary idea of how the constructed
parser determines the phrase structure of the input text.

A context-free grammar is said to be ambiguous if it permits more than one phrase
structure to describe a single input text. Most conflicts are the result of such ambiguities,
and there are three ways of resolving them:

1. Change the grammar so that only one phrase structure is possible.

2. Provide additional information that causes the parser to select one of the set of phrase
structures.

3. Change the form of the input text to avoid the ambiguity.

Note that all of these methods result in the parser recognizing a different language than the
one described by the original grammar.

3.1 How the generated parser determines phrase structure

The generated parser is a finite-state machine with a stack of states. This machine examines
the input text from left to right, one basic symbol at a time. The current state of the machine
is the one at the top of the stack. It defines the set of productions the parser might be
recognizing, and its progress in recognizing each. For example, consider the following trivial
grammar:

Sentence: Expression.

Expression: Primary.

Expression: Expression ’+’ Primary.
Primary: Integer.

Primary: Id.

Initially, the parser might be recognizing the first production, but in order to do so it
must recognize either the second or the third. In order to recognize the second production,
it must recognize either the fourth or fifth. Finally, because we are considering the initial
situation, no progress has been made in recognizing any of these productions. All of the
information expressed by this paragraph is represented by the initial state, which is the
only element of the stack.

On the basis of the state at the top of the stack, and the basic symbol being examined,
the machine decides on one of two moves:

Shift Accept the basic symbol as the corresponding terminal, push a new state onto
the stack, and examine the next basic symbol.

Reduce Note that a specific phrase has been recognized, remove a number of states equal
to the number of symbols in the sequence of the corresponding production from
the stack, push a new state onto the stack, and examine the current basic
symbol again.
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The parser halts after the reduce move noting that the production containing the axiom
has been recognized.

If the first basic symbol of the text were an identifier, a parser for the sample grammar
would make a shift move. The new state would be one in which the parser had completely
recognized the fifth production. Regardless of the next basic symbol, the parser would then
make a reduce move because the fifth production has been recognized. One state would be
removed from the stack, and a new state pushed in which the the parser had completely
recognized the second production. Again the parser would make a reduce move, removing
one state from the stack and pushing a state in which the parser had either completely
recognized the first production or recognized the first symbol of the third production.

The parser’s next move is determined by the current input symbol. If the text is empty
then the parser makes the reduce move noting that the first production has been recognized
and halts. If the current symbol of the text is '+’ then the parser makes a shift move.

A conflict occurs when the information available (the current state and the basic symbol
being examined) does not allow the parser to make a unique decision. If either a shift or a
reduce is possible, the conflict is a shift-reduce conflict; if more than one phrase could have
been recognized, the conflict is a reduce-reduce conflict.

The classic example of a shift-reduce conflict is the so-called “dangling else problem”:

Statement: ’if’ Expression ’then’ Statement.
Statement: ’if’ Expression ’then’ Statement ’else’ Statement.

A parser built from a grammar containing these productions will have at least one state
in which it could be recognizing either, and has just completed recognition of the Statement
following then. Suppose that the current basic symbol is else; what move should the parser
make next?

Clearly it could shift, accepting the else and going to a state in which it is recognizing
the second production and has just completed recognition of the else. It could also reduce,
however, recognizing an instance of the first production, popping four elements from the
stack and returning to the current state. Thus there is a shift-reduce conflict.

The conflict here is due to an ambiguity in the grammar. Consider the following input
text (E1 and E2 are arbitrary expressions, S1 and S2 are statements that do not contain
if):

if E1 then if E2 then S1 else S2

There are two possible phrase structures for this text, depending on whether the else is
assumed to belong with the first or second if:

if E1 then {if E2 then S1} else S2
if E1 then {if E2 then S1 else S2}

In each case the bracketed sub-sequence is a Statement according to one of the given rules,
and the entire line is a Statement according to the other. Both are perfectly legal phrase
structures according to the grammar.
The following description of integer denotations in various bases leads to a reduce-reduce

conflict:

Denotation: Seq / Seq Base.

Seq: Digit / Seq Next.

Next: Digit / Hexit.
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Digit: °0’ / ’1°> / °2> / *3’ / 4> / °5> / °6’ / ’7° [/ °8 [/ ’9’.

Hexit: ’a’ / ’b’> / ’¢c’> / °d’ / e’ / ’f’.

Base: ’b’ / ‘0’ / ‘e’ / ’x’.
When Base is omitted, the integer is assumed to be decimal if it contains no Hexit and
hexadecimal otherwise. An explicit Base indicates the base of the digits to be 2, 8, 10 or
16 respectively.

One of the states of the parser constructed from this grammar indicates that either the
Hexit b or the Base b has been recognized. If the input is not empty then the parser has
recognized a Hexit, but either is possible if the input is empty. Thus the parser cannot
determine the production by which to reduce, and the conflict arises.

This conflict indicates an ambiguity in the grammar, exemplified by the input text “1b”.
Two phrase structures are possible, one yielding the value “1 base 2” and the other yielding
the value “1b base 16”.

3.2 Conflict resolution by changing the grammar

An ambiguity can sometimes be resolved by changing the grammar. The altered grammar
must define exactly the same set of input texts as the grammar that gave rise to the conflict,
but it cannot describe more than one phrase structure for any particular text. That phrase
structure must reflect the meaning of the text as defined by the language design.

Most languages solve the dangling else problem by associating an else with the closest
if. Here is an unambiguous grammar describing that phrase structure:

Statement: matched / unmatched.

matched:
’if’ Expression ’then’ matched ’else’ matched /
Others.

unmatched:
’if’ Expression ’then’ matched ’else’ unmatched /
’if’ Expression ’then’ Statement.

(Others stands for all sequences by which Statement could be replaced that contain no
if.)

If the identifiers Statement, matched and unmatched are placed in an equivalence class,
then this grammar yields exactly the same phrase structure as the ambiguous grammar
given in the previous section. It is therefore acceptable as far as the remainder of the
translation problem is concerned.

3.3 Conflict resolution by ignoring possible structures

When Eli is constructing a parser from a grammar, it computes a set of symbols called
the exact right context for each production in each state. The exact right context of a
production in a state contains all of the symbols that could follow the phrase associated
with that production in that state. It is possible for the parser to reduce by a production if
the current state indicates that all of the symbols in the production’s sequence have been
accepted, and the next basic symbol of the input is a member of the exact right context of
that production in that state.



22 Syntactic Analysis

By adding a modification to the description of a production in a type-‘con’ file, the user
can specify that a particular symbol be deleted from one or more exact right contexts. The
user is, in effect, telling Eli that these symbols cannot follow the phrase associated with
that production in that state. In other words, the parser is to ignore phrase structures in
which the specified symbol follows the phrase.

A modification is a sequence consisting of either a dollar ($) or at-rate-of (@) followed by
a terminal. It can be placed anywhere within a production, and more than one modification
can appear in a single production. If a modification is introduced but no conflict is resolved
thereby, an error is reported.

Suppose that a modification $S is introduced into a production P. The effect of this
modification is to delete the symbol S from the exact right context of production P. This
kind of modification can be used to solve the dangling else problem:

Statement: ’if’ Expression ’then’ Statement $’else’.
Statement: ’if’ Expression ’then’ Statement ’else’ Statement.

The modification introduced into the first production removes else from the exact right
context of that production, and therefore makes a reduce move impossible for the parser
when it is in the state indicating that it is recognizing one of these productions and has just
recognized the first Statement. Since the reduce move is impossible, there is no shift-reduce
conflict.

Suppose that a modification @S is introduced into a production P. The effect of this
modification is to delete the symbol S from the exact right context of any production
involved in a reduce-reduce conflict with production P. This kind of modification can be
used to solve the integer denotation problem:

Denotation: Seq / Seq Base.

Seq: Digit / Seq Next.

Next: Digit / Hexit.

Digit: 0 / 11 / 19 / '3 / 14 / ’5? / ’6? / 70 / '8 / 90,

Hexit: ’a’ / ’b’> / ’c’> / ’4’ / ’e’ / ’f’.

Base: ’b’ QEOF / ’0’ / ’e’ @EQOF / ’x’.
The two modifications introduced into the productions remove EOF (the empty input text)
from the exact right contexts of the Hexit productions that conflict with these two Base
productions, and therefore make it impossible to reduce the Hexit productions when the
parser is in the state indicating it has completed recognizing either a Hexit or Base and
the input is empty. A b or e at the end of an input text will thus always be interpreted as a
marker: “1b” means “1 base 27, not “1b base 16”. (“1b base 16” would have to be written
as “1bx”.)
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4 Carrying Out Actions During Parsing

In some cases the translation problem being solved requires that arbitrary actions be carried
out as the parser is recognizing the phrase structure of the input, rather than waiting for
the complete phrase structure to be available. Most of those cases can be classified either as
interactive applications or as complex structuring problems in which contextual information
is needed to determine the phrase structure.

An arbitrary action is specified by a fragment of C code. None of the data accessed by
this code is provided by Eli; it is the responsibility of the writer of the arbitrary actions to
manage any data they manipulate. The simplest approach is to implement all actions as
invocations of operators exported by a library or user-defined abstract data type. If these
invocations have arguments, they are either constant values characteristic of the particular
invocation or references to an entity exported by some (possibly different) abstract data
type.

An action is a sequence consisting of an ampersand (&) followed by a literal. The content
of the literal is the C code fragment to be executed. Actions can be placed anywhere in a
production, and will be executed when all of the symbols to the left of the action’s position
have been recognized. Thus an action placed at the end of the production would be executed
when all of the symbols in the sequence have been recognized.

Here is a fragment of a grammar describing a desk calculator; actions are used to compute
subexpression values as the expression is parsed:

expression:
term /
expression ’+’ term &’ ExprPlus();’ /
expression ’-’ term &’ExprMinus();’

term:
primary /
term ’*’ primary &’ExprTimes();’ /
term ’/’ primary &’ExprDiv();’
The C code fragments invoke operations of a module that maintains a stack of integer
values.

If an action is placed anywhere other than the end of the production, it may lead to
conflicts. Suppose that an action is placed between the first and second symbols of the
sequence in a production P. Suppose further that there is another production, Q, whose
sequence begins with the same two symbols but does not contain the same action. If one
of the states of the parser could be recognizing either P or Q, and has recognized the first
symbol, it would not be able to decide whether or not to execute the action.
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5 Improving Error Recovery in the GGenerated
Parser

In some cases, the same pattern in the input text may represent different tokens in the
grammar. Knowing which token the pattern represents may be based on other available
information. When the parser determines that it cannot accept the next look-ahead token,
the boolean function Reparatur is called:

int Reparatur (POSITION *coord, int *syncode, int *intrinsic);

This allows the user to change the look-ahead token based on other available information.
If the function returns 0, then the token has not been altered and the generated parser
continues with its normal error recovery. If the function returns 1, it is assumed that
the passed in attributes of the token have been changed (in particular syncode), and the
generated parser rechecks the look-ahead token to see if it can accept it.

By default, the Eli system provides file ‘dfltrepar.c’ containing a definition of the
function Reparatur that always returns 0. To override the default, the user must provide
a new definition of the function Reparatur in some C file.

In case of erroneous input the generated parser invokes its error recovery. The error
recovery works completely automatically and usually behaves satisfactorily, in that it pro-
duces a tree that is close to the one that might be expected if there were no syntactic errors.
This enables the compiler to go on and detect additional semantic errors.

It is also possible to generate a program that will terminate after parsing if syntactic
errors were detected. To generate a program with this property, simply add the following
parameter to the request for derivation (see Section “define” in Products and Parameters
Reference):

+define=’STOPAFTERBADPARSE’

There are a few possibilities to control the error recovery in order to improve its behavior.
To understand the control facilities it is necessary to know how the error recovery works in
principle.

If an error in the input is detected two methods for error repair are used. The first
method tries to "correct" the error by deleting, inserting, or replacing one input symbol.
The repair is considered successful, if the next 4 parsing steps don’t lead to another error.
The use of this method is optional. If the first method is not used or if it failed the second
method performs a complete correction without backtracking. It skips input symbols until
a so-called restart point is reached. The restart point is a symbol where normal parsing can
be resumed. Before normal parsing resumes error correction takes place. Input symbols
are inserted in order to construct a syntactically correct input and the associated seman-
tic actions are executed. The intention is to pass consistent information to the following
compiler phases, which therefore do not have to bother with syntax errors.

The second method for error recovery can be controlled by providing additional infor-
mation. The intention is to decrease the probability of error avalanches caused by wrong
error repair decisions. As a running example, we use an ALGOL-like language defined by
the following grammar:

block : ’begin’ declarations statements ’end’
declarations : declarations declaration ’;’ / .
declaration : ’real’ ’identifier’ /
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/ ’procedure’ ’identifier’ ’;’ statement
statements : statement / statements ’;’ statement
statement : ’identifier’ / block .

Three types of error recovery information can be specified by the user in files of type
‘.perr’:

The error recovery has a major drawback when applied to errors in lists, defined, e.g.,
as

statements : statement / statements ’;’ statement

7.7

A missing delimiter ’;’ cannot be inserted in order to parse the rest of the list. This
could lead to an infinite loop in the parser. Therefore errors like

begin identifier begin identifier ;
cannot be repaired by inserting the semicolon ’;” but by deleting the two symbols ’begin’
and ’identifier’.
The following specification in a ‘.perr’ file defines the mentioned terminals as list sep-
arators.

$SEPA ;2 . 70
A list separator will always be inserted if a restart point can be found immediately

behind it. In this case the rest of the list can be parsed without the danger of getting into
an infinite loop.

Programming languages have bracketed structures like 'begin’ and ’end’ which delimit
not only the syntactic structure of "block" but also the scope of identifiers. Deleting or
inserting such semantically significant parentheses is highly probably to cause avalanches of
syntactic and semantic errors. Therefore, the error recovery should not change the structures
of a program as far as it concerns scopes of identifiers or similar semantic concepts.

Consider the following erroneous input:

begin
procedure identifier ;
begin
real identifier ;
identifier ;
real identifier ;
identifier ;

Inserting the terminal ’end’ before the second "real declaration" corrects the program
syntactically but may lead to a semantic error in the last line, as the scope structure is
changed.

The specification
$BRACKET ’begin’ . ’end’
in a file of type ‘.perr’ declares the mentioned terminals to be delimiters of semantically

significant regions (semantic delimiters). These terminals are not inserted unless the restart
point is end of input or the restart point itself is specified as such a delimiter.

Usually there are a few terminals not suited as restart points. The reason is that is pro-
gramming languages terminals like ’identifier’ or 'number’ occur in many different syntactic
positions. Consider the error
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begin real identifier identifier ; real identifier ...

There is no safe way to tell whether the second identifier belongs to a statement or to a
declaration. If it is used as a restart point, the error is corrected to

begin real identifier ; identifier ; real identifier ...

This corresponds to a transition from the declaration part into the statement part of
the block, a frequent cause for error avalanches. In general, terminals like ’identifier’ or
‘number’ are not feasible as restart points.

The specification

$SKIP ’identifier’ . ’integer_number’ . ’real_number’

in a type ‘.perr’ file defines the mentioned terminals as unsafe restart points. Unsafe

restart points are skipped in case of an error in order to search for restart points more
feasible.

With the above specification the second identifier in the mentioned example will be
skipped. Parsing resumes at the following semicolon without carrying out a transition to
the statement part.
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6 Using Foreign parsers

When Eli is used to generate a parser, Maptool is able to relate the concrete syntax to the
abstract syntax and create all of the code necessary to build a tree representing the input
text. If a parser is generated by other tools, or written by hand, tree-building code must be
created manually. In this section, we assume that a parser for the source language exists,
and that Eli is being used to generate code from a LIDO specification of the abstract syntax
and desired tree computations.

The interface specification of any parser designed to support tree computation defines
a set of function invocations that will occur as parsing of the input text proceeds. If
the parser has been generated, these function invocations are included in the grammar as
semantic actions (see Chapter 4 [Carrying Out Actions During Parsing|, page 23).

The code generated from a LIDO specification includes a set of tree construction func-
tions, one for each rule context (see Section “Tree Construction Functions” in LIDO -
Reference Manual). These functions must be invoked at appropriate times with appropri-
ate arguments during the course of the parse. In order to use an existing parser, therefore,
we must implement a module obeying the interface specification of that parser and correctly
invoking the tree construction functions generated from the LIDO specification.

It would be possible to develop the module in isolation and then integrate it with the
foreign parser, but a better approach is to use the foreign parser as part of the Eli speci-
fication of the complete program. Development can then proceed incrementally using Eli
tools like execution monitoring to track down errors and verify correct behavior.

6.1 Building tree nodes

A typical parser interface specifies a data structure to define text fragments, in addition to
the semantic actions:

typedef struct { /* Basic symbol */

int line; /*  Source line containing the symbol */
int col; /*  Column containing the first character */
int type; /*  Classification code of the symbol */
char *text; /*  Symbol text */

} Token;

/* Symbol classification codes */
#define ETXT 1 /*  End of the shource file */
#define LPAR 2 /*  Left parenthesis */
#define RPAR 3 /*  Right parenthesis */
#define PLUS 4 /*  Plus */
#define STAR 5 /*  Asterisk x*/
#define INTG 6 /*  Integer */

Each tree construction function generated by Eli from a LIDO specification must be
invoked with pointers to its children, and therefore the tree must be built bottom-up. The
usual strategy is to store pointers to constructed nodes on a stack until their parent node
is built. Eli provides a stack module for this purpose:

NODEPTR *_nst; /* Stack array: _nst[...] are the elements */
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int _nsp; /* Stack index: _nst[_nsp] is the top element */
void _incrnodestack(); /* Push an empty element onto the stack */

Elements of the stack are _nst[_nsp], _nst[_nsp-1], etc. The statement _nsp-=k; pops k
elements off of the stack, and the statement _incrnodestack(); pushes an empty element
onto the stack. To make the stack visible, include the file ‘treestack.h’.

The behavior of the functions called by the parser is determined primarily by the needs
of the abstract syntax. We’ll consider two LIDO specifications, one for computing the value
of an integer expression involving addition and multiplication and the other for carrying
out overload resolution in more general expressions.

6.1.1 Tree designed for expression evaluation

Consider the following LIDO specification, which evaluates an integer expression involving
addition and multiplication. It assumes each Integer terminal is represented by the value
of the corresponding integer:

ATTR val: int;

RULE Top: Root ::= Expr COMPUTE
printf ("The value is %d\n", Expr.val);

END;

RULE Add: Expr ::= Expr ’+’ Expr COMPUTE
Expr[1].val=ADD(Expr[2].val,Expr[3].val);

END;

RULE Mul: Expr ::= Expr ’*’ Expr COMPUTE
Expr[1].val=MUL(Expr[2].val,Expr[3].val);

END;

RULE Num: Expr ::= Integer COMPUTE
Expr.val=Integer;

END;

Eli generates four node construction functions from this specification:

NODEPTR MkTop(POSITION *_coord, NODEPTR _d1);
NODEPTR MkAdd(POSITION *_coord, NODEPTR _d1, NODEPTR _d2);
NODEPTR MkMul (POSITION *_coord, NODEPTR _d1, NODEPTR _d2);
NODEPTR MkNum(POSITION *_coord, int _TERM1);

To make the node construction functions visible, include the file ‘treecon.h’.
The _coord parameter will be discussed in detail in the next section; here we will always

supply NoPosition as the value of this argument (see Section “Source Text Coordinates
and Error Reporting” in The Eli Library).

Our module must call MkNum whenever the parser recognizes an integer, and we must
provide the internal value of that integer as the second argument of that call. The result of
the call must be pushed onto the top of the stack.

Suppose that by looking at the code of the parser, or the grammar from which the parser
was generated, we determine that when the parser recognizes an integer in the input text
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it calls the function int_literal_constant with the Token describing that integer as its
argument. We might then implement int_literal_constant as follows:

void int_literal_constant(Token *t)

{ _incrnodestack();
_nst[_nsp]=MkNum(NoPosition,atoi(t->text));

}

Note that this code does not check for an error in the conversion of the string. That might
or might not be reasonable, depending upon how careful the parser was in accepting a string
as a representation of an integer value.

Further examination of the parser might show that it calls the function mult_operand
with no arguments when it has recognized an expression involving two operands and an
asterisk operator. In this case, the nodes for the two operand expressions are already on
the stack. They must be removed and replaced by a Mul node:

void mult_operand(void)
{ _nst[_nsp-1]1=MkMul (NoPosition,_nst[_nsp-1],_nst[_nspl);
_nsp——;
}
Implementation of the action when the parser recognizes an expression involving two
operands and a plus operator is identical except that MkAdd is invoked instead of MkMul.

If the parser invokes level _0_expr with no arguments when it has completed recognition
of the input text, the implementation of that function might be:

void level_O_expr(void)
{ _nst[_nsp]l=MkTop(NoPosition,_nst[_nsp]);
}

Suppose that the parser invokes level _3_expr with no arguments when it has recognized
an expression in parentheses. There is no corresponding rule in the abstract syntax, because
parentheses serve only to override operator precedence and do not affect the computation.
In that case, the routine does nothing:

void level_3_expr(void)

{12

An expression language usually has precedence levels containing several operators. For
example, dyadic + and - operators usually have the same precedence, as do dyadic * and
/. A parser may invoke a single function when it recognizes any dyadic expression whose
operator is at a specific precedence level. In that case, some indication of the operator
must be passed to that function. For example, the parser might call mult_operand with
a pointer to the operator token. The implementation of mult_operand must then use the
token type to select the correct node construction function:

void mult_operand(Token *o)
{ if (o->type == STAR)
_nst[_nsp-1]=MkMul (NoPosition,_nst[_nsp-1],_nst[_nspl);
else
_nst[_nsp-1]1=MkDiv(NoPosition,_nst[_nsp-1],_nst[_nspl);
-nsp——;

¥
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This assumes that the parser will not invoke mult_operand unless the operator is either * or
/, and therefore no error checking is required. (If the number of operators at the precedence
level were larger, then a switch statement might be preferable to the conditional.)

The code for mult_operand also assumes that the division is implemented by a LIDO
rule named Div:

RULE Div: Expr ::= Expr ’/’ Expr COMPUTE
Expr[1].val=DIV(Expr[2].val,Expr[3].val);
END;

6.1.2 Tree designed for overload resolution

Consider the following LIDO specification, which provides a structure to analyze the result
type of an expression involving addition, subtraction, multiplication, and division of inte-
gers and floating point numbers (see Section “Operator Overloading” in Tutorial on Type
Analysis). It assumes that each Integer and Float terminal is represented by the string
definining the corresponding number:

RULE Top: Root ::= Expr END;

RULE Dya: Expr ::= Expr BinOp Expr END;
RULE Pls: BinOp ::= ’+’ END;

RULE Min: BinOp ::= ’-’ END;

RULE Str: BinOp ::= ’*’ END;

RULE Sls: BinOp ::= ’/’ END;

RULE Ntg: Expr ::= Integer END;

RULE Flt: Expr ::= Float END;
Eli generates eight node construction functions from this specification. The first six are:
NODEPTR MkTop(POSITION *_coord, NODEPTR _d1);
NODEPTR MkDya(POSITION *_coord, NODEPTR _d1, NODEPTR _d2, NODEPTR _d3);
NODEPTR MkP1s(POSITION *_coord);
NODEPTR MkMin(POSITION *_coord) ;
NODEPTR MkAst (POSITION *_coord);
NODEPTR MkS1s(POSITION *_coord);
To make the node construction functions visible, include the file ‘treenode.h’.
In this example, we would like to represent the integer and floating-point constants in
the tree by the strings that represent them in the source text. There are two possibilities:
1. If the foreign parser stores permanent copies of token strings, then pointers to those
strings can be stored in the tree nodes.

2. If the foreign parser points to token strings in the input buffer, then our module must
store them permanently for reference by the tree nodes.
In case 1, a specification must be added to the LIDO description of the tree:
TERM Integer, Float: CharPtr;

CharPtr is the LIDO name for the C type char *. The definition of CharPtr is made
available by including file ‘strings.h’.
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The TERM specification causes the two functions MxNtg and MkF1t to be defined as follows:

NODEPTR Mthg(PUSITION *_coord, CharPtr t);
NODEPTR MkF1t(POSITION *_coord, CharPtr t);

Suppose that, as discussed in the last subsection, the parser calls int_literal_constant
when it recognizes an integer in the source text. That routine could be implemented as:

void int_literal_constant(Token *t)

{ _incrnodestack();
_nst[_nsp]=MkNtg(NoPosition,t->text);

}

In case 2, we can make use of Eli’'s MakeName module (see Section “Generating Optional
Identifiers” in Solutions of common problems). It provides a function to store a string
uniquely and return an integer-valued hash table index to that unique representation:

int MakeName(char *c);

Because the default type of a LIDO terminal is int, we can omit the TERM specification and
the two functions MxNtg and MkF1t will be defined as follows:

NODEPTR MkNtg(POSITION *_coord, int t);
NODEPTR MkF1t(POSITION *_coord, int t);

The implementation of int_literal_constant would be:

void int_literal_constant(Token *t)

{ _incrnodestack();
_nst[_nsp]=MkNum(NoPosition,MakeName (t->text));

}

The MakeName module must be instantiated in order to gain access to the MakeName
function. This is done by adding the following line to a ‘.specs’ file:

$/Tech/MakeName.gnrc:inst

No +instance parameter should be supplied, because scanning and parsing are provided
by the foreign code. Once the module has been instantiated, the definition of the MakeName
function is made available to the tree construction module by including file ‘MakeName.h’.

Let’s assume that the parser invokes a single function when it recognizes any dyadic
expression whose operator is at a specific precedence level, passing the operator token to
that function. For example, + and - might both be operators at precedence level 1:

void level_1_operator(Token *o)
{ NODEPTR op;
if (o->type == PLUS) op=MkP1ls(NoPosition);

else op=MkMin (NoPosition) ;
_nst[_nsp-1]=MkDya(NoPosition,_nst[_nsp-1],op,_nst[_nsp]l);
_nsp--;

}

This assumes that the parser will not invoke level_1_operator unless the operator is
either + or -, and therefore no error checking is required. (If the number of operators
at the precedence level were larger, then a switch statement might be preferable to the
conditional.)
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If, on the other hand, the parser invokes a function add_operand with no arguments
when it has recognized an expression involving two operands and an addition operator then
add_operand can be implemented as:

void add_operand(void)
{ _nst[_nsp-1]=
MkDya(NoPosition, _nst[_nsp-1] ,MkP1ls(NoPosition),_nst[_nspl);
_nsp--;
}
Note that the operator node implied by the add_operand call must be explicitly created in
this case; it is only implicit in the parse.

6.1.3 Tree nodes for chain rules

Recall that a chain rule has the form ‘X ::=Y’, where ‘X’ differs from ‘Y’ (see Section 2.1.1
[Chain rule definitions|, page 9). Such a rule will always result in a tree node with a single
child, and if the rule name is ‘Ch’ then the constructor function will be:
NODEPTR MkCh(POSITION *_coord, NODEPTR _d1);
With the exception of the root node of the tree, it is never necessary to explicitly invoke
the constructor of a chain rule node. This is actually a very important property of the tree
construction module. For example, consider the following fragment of a LIDO specification:

RULE SimpleVar: Var ::= VrblIdUse END;
RULE SubscrVar: Var ::= Var ’[’ Exp ’]’ END;
RULE VarExp: Exp ::= Var END;
RULE ArrayExp: Exp ::= TypeldUse ’[’ Exp ’]’ ’of’ Exp END;
RULE Typ: TypeldUse ::= Symbol END;
RULE Var: VrblIdUse ::= Symbol END;
RULE Idn: Symbol ::= Identifier END;

Identifier is a terminal symbol, represented by a unique permanent string (see
Section 6.1.2 [Tree designed for overload resolution], page 32).

The problem here is that, given the input sequence ‘a[’, a parser would have to look
beyond the matching ‘]’ in order to decide whether ‘a’ was a VrblIdUse or a TypeIdUse.
But because the rules Typ and Var are chain rules, their constructor functions don’t need
to be called. That means the parser can construct an Idn node for ‘a’ and leave it on the
stack. If that node is later used as the left child of a SubscrVar node, the tree construction
module will insert the necessary Var and SimpleVar nodes. If, on the other hand, the Idn
node is used as the left child of an ArrayExp node then the tree construction module will
insert the necessary Typ node. There is no need for the parser to look ahead.

6.2 Adding coordinate information

LIDO computations may access the coordinates of the first character of the source text
region represented by a node. Usually, these computations are used to attach error reports
to appropriate text locations. Many of the modules that implement common computations
use this facility for error reporting (for an example, see Section “Verifying typed identifier
usage” in Type Analysis).

Execution monitoring is provided by Noosa, a separate process that can display the
abstract syntax tree and graphically relate it to the source text (see Section “Trees and
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Attribute Values” in Execution Monitoring Reference). Noosa requires that both the source
text coordinates of the first character of a tree context and those of the first character beyond
that context be supplied to its construction function.

Specific source text coordinates are represented by a POSITION (see Section “Source Text
Coordinates and Error Reporting” in The Eli Library). This data type and the operations
upon it are made visible by including the file ‘err.h’. An appropriate POSITION value must
be created from parser data and a pointer to that data passed to the tree construction
function.

6.2.1 Supplying coordinates for computation

LIDO provides three names that can be used in computations to obtain source text coordi-
nates of a tree context (see Section “Predefined Entities” in LIDO - Reference Manual):

LINE the source line number of the tree context.
COL the source column number of the tree context.

COORDREF the address of the source coordinates of the tree context, to be used for example
in calls of the message routine of the error module or in calls of tree construction
functions.

If any of these three names appear in the LIDO computation, the source text coordinates of
the first character of each tree context must be supplied to its node construction function.
That information must be extracted from the parser.

In order to support the use of coordinates in computation, the tree construction function
must have access to the location of the first character of its tree context. We have assumed
that each token provided by the parser specifies the line and column of the first character
of the corresponding input string (see Section 6.1 [Building tree nodes|, page 29). This
information can be used to build a POSITION value:

POSITION curpos;

void int_literal_constant(Token *t)

{ LineOf (curpos) = t->line; Col0f (curpos) = t->col;
_incrnodestack() ;
_nst [_nsp]=MkNum(&curpos,atoi(t->text));

}

Notice that the address of curpos, rather then curpos itself, is passed to the node con-
struction function MkNum.

Unfortunately, this information isn’t sufficient. We must not only pass the coordinates
to MkNum, we must also save them on the stack in case this node is the left child of another
node. At that point, the coordinates of the first character of this token would be the
coordinates of the first character of the larger tree context.

The Eli stack module actually provides two parallel stacks, _nst for nodes and _pst for
positions. Thus the complete code for integer literal constants would be:

void int_literal_constant(Token *t)
{ LineOf (curpos) = t->line; ColOf(curpos) = t->col;
_incrnodestack();
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_pst[_nspl=curpos;
_nst[_nsp]=MkNum(&curpos,atoi(t->text));
}

The position value, not a pointer to that value, is saved on the stack. That frees curpos to
be used in constructing other values.

When a node whose children are all on the stack is constructed, the coordinates are
obtained from the leftmost child:

void mult_operand(void)
{ _nst[_nsp-1]1=MkMul (&_pst[_nsp-1],_nst[_nsp-1],_nst[_nspl);
_nsp--;
}
Generally speaking, the stack location for the left operand becomes the stack location
for the result. Because the coordinates of the result are the coordinates of the left operand,
there is no need for an assignment to _pst.

6.2.2 Supplying coordinates for Noosa

Noosa requires the coordinates of the first character of a tree context and also the coor-
dinates of the first character beyond the end of that context. The additional coordinates
should be supplied, however, only if execution monitoring has actually been specified for
the particular run. This is because the POSITION value will only have the necessary space
if monitoring has been specified.

The simplest strategy is to define a routine to compute the appropriate POSITION value
for a given token:

POSITION PositionOf (Token_t *token)
{ POSITION curpos;

Line0Of (curpos) = token->line; Col0f(curpos) = token->col;
#ifdef RIGHTCOORD
RLineOf (curpos) = LineOf (curpos) ;
RCol0f (curpos) = ColOf (curpos) + strlen(token->text);
#ifdef MONITOR
CumCo10f (curpos) = Col0f (curpos); RCumColOf (curpos) = RCol0f (curpos);
#endif
#endif
return curpos;

}

RIGHTCOORD and MONITOR are defined by Eli for each C compilation if the user spec-
ifies the +monitor parameter to the derivation (see Section “monitor” in Products and
Parameters Reference).

A node for an integer literal constant would then be built by:

void int_literal_constant(Token *t)

{ curpos = PositionOf(t);
_incrnodestack();
_pst[_nspl=curpos;
_nst [_nsp]=MkNum(&curpos,atoi(t->text));
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}

The construction of a node whose children are on the stack becomes more complex,
because the coordinates of the constructed node involve the coordinates of the first character
of the leftmost child node and the coordinates of the first character beyond the end of
rightmost child node. The tree stack module provides a function, Span0f, to compute the
correct coordintes:

POSITION SpanOf (POSITION left, POSITION right);
Using Span0Of, the mult_operand routine would be written as:

void mult_operand(void)

{ curpos=Span0f (_pst[_nsp-1],_pst[_nspl);
_pst[_nsp-1]=curpos;
_nst[_nsp-1]=MkMul (&curpos, _nst[_nsp-1], _nst[_nspl);

_nsp--;

}
6.3 Building LISTOF constructs

There are three tree construction functions associated with a LISTOF construct with the
rule name ‘Ex’ (see Section “Tree Construction Functions” in LIDO - Reference Manual):

NODEPTR MkEx (POSITION *_coord, NODEPTR _di);
NODEPTR MkOEx (POSITION *_coord);
NODEPTR Mk2Ex (POSITION *_coord, NODEPTR _d1, NODEPTR _d2);

Arguments ‘_d1’ and ‘_d2’ may be:
e the result of MkOEx, which represents an empty portion of the list (any call to MkOEx
can be replaced by the constant NULLNODEPTR)
e the result of Mk2Ex, which represents a portion (possibly empty) of the list

e any node that can be made a list element subtree by implicit insertion of chain contexts,
which represents a single element of the list

The node representing the complete ‘Ex’ construct is the one resulting from a call of MkEx.

LISTOF constructs always involve either looping or recursion in a parser. For example,
consider a language in which a block consists of an arbitrary non-empty sequence of decla-
rations and statements. The LIDO specification for the abstract syntax might contain the
rule:

RULE Blk: Block LISTOF Declaration | Statement END;

Suppose that the parser calls declaration_action after each Declaration has been
recognized and statement_action after each Statement has been recognized. Moreover,
it calls block_begin prior to beginning analysis of the list and block_end when the end of
the block has been reached:

void block_begin(void)
{ _incrnodestack();

_nst [_nsp]=MkOB1lk (&curpos) ;
}

void declaration_action(void)
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{ curpos=Span0f (_pst[_nsp-1],_pst[_nspl);
_pst[_nsp-1]=curpos;
_nst[_nsp-1]=Mk2B1k (&curpos, _nst[_nsp-1],_nst[_nspl);
_nsp--;

}

void statement_action(void)
{ declaration_action(void) }

void block_end(void)
{ _nst[_nsp]l=MkBlk(&_pst[_nspl,_nst[_nspl); }

6.4 Running a foreign parser under Eli

There are two distinct possibilities for the implementation of a foreign parser:

e The foreign parser exists as a collection of C/C++ source files and/or object files that
can be linked with the tree construction and computation modules. (A scanner/parser
created by LEX/YACC or FLEX/Bison would have this property.)

e The foreign parser exists as an executable file that expects to load a shared library
containing the tree construction and computation modules. (A scanner/parser created
by a Java-based tool like ANTLR would have this property.)

6.4.1 The parser is a collection of routines

When the parser is a collection of routines, whether in source or object form, the files
containing those routines can be listed in a ‘. specs’ file (see Section “Descriptive Mecha-
nisms Known to Eli” in Guide for New Eli Users). The name of that file then appears in
the overall specification. For example, suppose that all of the components of the foreign
parser are listed in file ‘parser.specs’ and the tree computations are defined by the file
‘treecomp.lido’. Then the overall specification of the program might be ‘prog.specs’
with the content:

parser.specs
treecomp.lido

(Normally the tree computation would involve a number of different specifications rather
than a single ‘.1ido’ file, so a more realistic example would use ‘treecomp.specs’ or
‘treecomp.fw’ to specify it.)

Eli normally generates a parser from every specification. When a parser is supplied, this
behavior must be suppressed by adding the parameter +parser=none to the derivation (see
Section “How to Request Product Manufacture” in Guide for New Eli Users):

prog.specs +parser=none :exe
Eli also normally provides the following main program:

int main(int argc , char *argv[])
{
#ifdef MONITOR
_dap_init (argv[0]);
_dapto_enter ("driver");
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#endif

ParseCommandLine (argc, argv);
#include "INIT.h"

TREEBUILDQ) ;

#ifdef STOPAFTERBADPARSE

if (ErrorCount[ERROR] == 0)
#endif

ATTREVAL() ;

#include "FINL.h"

#ifdef MONITOR
_dapto_leave ("driver");
#endif
return (ErrorCount[ERROR] > 0);
}
One possible strategy is to write a wrapper procedure named TREEBUILD that carries out
all of the setup operations needed for the foreign parser and then invokes it. This can often
be done by renaming a main program provided with the foreign parser and making a few
changes to it.
If it is not feasible to modify the main program of the foreign parser, then production of
Eli’s main program must be suppressed by adding the parameter +nomain to the derivation:
prog.specs +nomain +parser=none :exe
In this case, however, the interface module must:
1. include the initialization code file ‘INIT.h’,
2. invoke ATTREVAL after the tree has been built,

3. and include the finalization code file ‘FINL.h’ .

If the parser executes a function call ‘begin_parse();’ before invoking any other func-
tions of the interface, and a function call ‘end_parse () ;” when it has completed recognition
of the input text, then the implementation of these two functions might be

void begin_parse(void)
{
#ifdef MONITOR
_dap_init (""); /* Argument is generally the program name */
#endif

#include "INIT.h"
}

void end_parse(void)
{ _nst[_nsp]l=MkRoot(&_pst[_nsp],_nst[_nspl);
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ATTREVALQ) ;

#include "FINL.h"
}

Replace "Root" by the name of the rule that creates the root node of the tree. If the root
node is created by another function, omit the Mk-function call. ATTREVAL assumes that the
root node is at the top of the stack; if this pre-condition is not satisfied then the computation
will silently do nothing.

6.4.2 The parser is an executable file

When the parser is an executable file that expects to load a shared library, that library
must be built from the specifications of the tree construction and computation (see Section
“so” in Products and Parameters Reference). The library must not contain a parser or a
main program:

treecomp.specs +nomain +parser=none :so

Here we assume that all of the components of the LIDO specification, tree construction
interface, and supporting modules are listed in ‘treecomp.specs’.

The simplest approach to integrating the foreign parser with the shared library is to
copy it to a file with the name that the foreign parser expects. For example, if the parser
program expects to load a shared library named ‘ParserActions.so’, then use the following
derivation to make the library available under that name:

treecomp.specs +nomain +parser=none :so0 > libParserActions.so

(See your system documentation for the placement and naming of shared library files.)
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Appendix A Grammars for the Specification Files
TypeConFile ::= Production™.
Production ::= Identifier Delim Alternatives . .
Delim == ‘2" [ “::=".

Alternatives ::=
Alternatives ‘/* Alternative /
Alternatives ‘//’ Separator |
Alternative .

Alternative ::= Element*.
Separator ::= Symbol.

Element ::=
Symbol /
Connection /
Modification /
‘C’ Alternatives )’ /
‘[’ Alternatives ‘1’ /
Element ‘¥ /
Element ‘+’ .

Connection ::= ‘&’ Symbol.
Modification ::= ‘@’ Symbol / ‘¢’ Symbol.

Symbol ::= Identifier / Literal.

TypeMapkFile ::=
(‘MAPSYM’ SymbolMapping+ / ‘MAPRULE’ RuleMapping+ / ‘MAPCHAINS’)+ .

SymbolMapping: Identifier ‘: :=" Members ‘.’ .
Members: Identifier+ .

RuleMapping: Rule Rewrite RuleName ‘.’ .
Rule: Identifier Delimiter RHS .

Delimiter: :7 [ ‘::=" .

RHS: Element* .

Element: Identifier | Text .

Rewrite: ‘<’ RewriteRHS > .

RewriteRHS: (Position / Text)+ .

Position: ‘$’ Integer .
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RuleName: / ‘.’ Identifier .

TypePerrFile ::= ErrorSpecs.

ErrorSpecs ::= ErrorSpecs SeparatorSpecs /
ErrorSpecs BracketSpecs /
ErrorSpecs SkipSpecs / .

SeparatorSpecs ::= ‘$SEPA’ Symbols .

BracketSpecs ::= ‘$BRACKET’ Symbols .

SkipSpecs ::= ‘$SKIP’ Symbols .

Symbols ::= Symbols Symbol .

Symbol ::= Identifier / Literal .

Syntactic Analysis
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