
Library Reference Manual

$Revision: 2.26 $

Compiler Tools Group
Department of Electrical and Computer Engineering

University of Colorado
Boulder, CO, USA

80309-0425

i

Table of Contents

1 The Eli Library . 1
1.1 Using Frame Modules . 1
1.2 Text Input . 2
1.3 Source Text Coordinates and Error Reporting 3
1.4 Memory Object Management . 5
1.5 Character String Storage . 9
1.6 Character String Arithmetic . 10
1.7 Unique Identifier Management . 15
1.8 Contour-Model Environment . 16
1.9 Storage Layout . 17

Index . 19

Chapter 1: The Eli Library 1

1 The Eli Library

The Eli library contains a collection of solutions to common problems in language imple-
mentation. If one of these problems is identified in the design of an application specification,
the library’s solution can be easily applied.

This manual describes Eli’s frame modules. They provide basic operations that are not
normally varied. Some of the operations are quite general, while others carry out specific
translator-related tasks. In each case, however, the task performed by the module is largely
independent of the overall problem being solved by the specification.

Frame modules are all code modules, and the facilities they export are made available
via the associated header file. They can be used directly by C programs, and do not involve
any other Eli facilities.

Another class of modules provided by Eli contain a mixture of code and specifications, of
which some can be instantiated. These modules solve tasks such as name analysis according
to Pascal scope rules. Descriptions of these modules are in the specification module library
manual. See Section “Specification Module Library” in modlib.

1.1 Using Frame Modules

The library modules described in this manual are implemented directly in C. These modules
may export constants, variables and routines to their clients. To reduce overhead, these
modules have been pre-compiled and stored in the frame. Frame modules need not be
instantiated, although it is allowable to do so. A frame module will be incorporated into
a specification whenever anything exported by that module is used in the specification. If
a frame module is instantiated by a specification, however, it will be included regardless
of whether any exported facilities are used. In either case, source code for the module is
included in the source product. See Section “Source Version of the Processor” in pp.

Each module is associated with a header file that specifies the interface it presents to
its clients. Any module requiring access to the exports of another module must include the
header file associated with the exporting module.

Library header files are written according to certain conventions. We recommend
strongly that you follow the same conventions when defining code modules to carry out
tasks specific to your problem. Your header files will be included in generated modules,
and Eli will make the same assumptions about them that it does about header files from
the library. Failure to follow these conventions may result in errors when the generated
programs are compiled. Since you will not recognize the generated programs, such errors
may be difficult to diagnose.

By convention, every header file is complete: Including a module’s header file in a C
program provides all of the information needed to use that module. For example, the
environment module exports operations that deliver definition table keys as their results.
In order to use the environment module, therefore, a client must have access to the interface
of the definition table module. Our convention therefore requires that the header file for
the environment module include the header file for the definition table module. If the
environment module header file did not include the definition table module header file,
a C program that included that included the environment module header file would not
necessarily have all of the information needed to use the environment module.

2 Library Reference

This convention greatly simplifies decisions about which header files to include, and
avoids all questions of the order in which header files should be included. It does, however,
require that each header file be protected against multiple inclusion. Protection is provided
by defining a symbol in each header file and skipping the entire contents if that symbol is
already defined. The symbol is the name of the header file, given as upper-case characters
with any periods replaced by underscores.

Here is an excerpt from ‘envmod.h’, the header file for the environment module:

#ifndef ENVMOD_H

#define ENVMOD_H

#include "deftbl.h"

typedef struct EnvImpl *Environment; /* Set of Identifier/Definition pairs */

...

/***/

#if defined(__cplusplus) || defined(__STDC__)

extern DefTableKey DefineIdn(Environment env, int idn);

#else

extern DefTableKey DefineIdn();

#endif

/* Define an identifier in a scope

* If idn is defined in env then on exit-

* DefineIdn=key for idn in env

* Else let n be a previously-unused definition table key

* Then on exit-

* DefineIdn=n

* idn is defined in env with the key n

***/

...

#endif

Protection against multiple inclusion is provided by the test of ENVMOD_H. DefineIdn

returns a definition table key, so the completeness convention requires that ‘deftbl.h’ (the
definition table module interface) be included. Environment is a type exported by the
environment module, and it is defined in this interface.

1.2 Text Input

#include "source.h"

SrcBufPtr SrcBuffer;

char *SRCFILE;

char *TEXTSTART;

Chapter 1: The Eli Library 3

void initBuf(char *name, int f);

void refillBuf(char *p);

int finlBuf();

The source module has been designed to allow rapid access to the characters of a text
file. A text file is a sequence of lines, each terminated by a newline character. There is no
limit on the length of a line. The source module guarantees that if the first character of a
line is in memory then all of the characters of that line, including the terminating newline
character, are in contiguous memory locations. The newline terminating the last line in
memory is followed by an ASCII NUL character, and thus the sequence of lines constitutes
a C string. NUL characters are not allowed within the text file.

To use the module, first call initBuf, with a file name and descriptor. The file must be
opened for reading (by open(2) prior to the call. Upon return, SrcBuffer points to a new
text buffer, SRCFILE is the symbolic name of the input file, and TEXTSTART points to the
first character of the first line of the input file. (If the input file is empty then TEXTSTART

points to an ASCII NUL character.)

SRCFILE and TEXTSTART are components of the text buffer; TEXTSTARTmay be arbitrarily
altered by any client of the source module. Normally, TEXTSTART is used to describe the
position reached by the client in processing the buffer’s text. Because it is a component of
the text buffer, there is no need to save and restore it when another text buffer is created
by a subsequent invocation of initBuf.

All source module operations take place on the text buffer pointed to by SrcBuffer,
and both SRCFILE and TEXTSTART use SrcBuffer to access the text buffer. A client of the
source module may manage a number of text buffers simultaneously by saving and restoring
SrcBuffer.

When a client has processed all of the information in a text buffer, additional information
can be obtained from the file by invoking refillBuf with a pointer to the text in the buffer.
At least one line of text will be added to the text pointed to by the argument of refillBuf,
and upon return TEXTSTART points to the first character of the augmented text. The content
of the memory pointed to by the argument of refillBuf is undefined. (If there is no more
information in the file then the string pointed to by the argument of refillBuf is not
augmented. Upon return TEXTSTART points to the first character of that string and the
content of the memory pointed to by the argument of refillBuf is undefined.)

Invocation of finlBuf frees all storage for the text buffer pointed to by SrcBuffer.
Upon return, SrcBuffer contains a null pointer and the value of finlBuf is the descriptor
of the file associated with the buffer. The file itself has not been closed.

1.3 Source Text Coordinates and Error Reporting

#include "err.h"

typedef POSITION *CoordPtr;

POSITION NoCoord;

4 Library Reference

CoordPtr NoPosition;

int LineOf(POSITION);

int ColOf(POSITION);

int LineNum;

POSITION curpos;

int ErrorCount[];

ErrorInit(int ImmOut, int AGout, int ErrLimit)

message(int severity, char *text, int grammar, CoordPtr source)

lisedit(char *name; FILE *stream; int cutoff, erronly)

This module implements the concept of a source text coordinate system and a set of
errors of various levels of severity. Error reports are tied to particular positions in the
source text coordinate system, and may be combined with the source text in a separate
pass.

The coordinate of a source text position is a pair (line index, column index), and is
defined by a structure of type POSITION. LineOf and ColOf are access functions for the
elements of the pair; they may be used either to read or to set these elements.

LineNum and curpos are variables provided by the error reporting module for the use of
its clients. LineNum initially has the value 1. It is neither read nor set by the error module.
The initial value of curpos is undefined, and it is also neither read nor set by the error
module.

ErrorInit may be called in order to change the default behavior of the error module.
By default, all error messages are written to stderr as they occur, however, if ErrorInit
has been called with a value of 0 for ImmOut, errors will not be reported until lisedit is
used. Buffering is prevented by calling fflush after each output. The error message format
is illustrated by the following:

"filename", line 24:3 ERROR: boolean type required AG=124

The information shown is: the file name of the input file, the line and column in that file
where the error occurred, the severity (see below) and the error message iself. The integer
value following AG can be used to provide additional information when a particular report
may originate from many places. This integer value is not reported if ErrorInit has been
called with a value of 0 for AGout.

The format is designed so that it can be used as input to a special mechanism, such as
an intelligent editor, for making the reports known to the user.

After printing to stderr, the errors are also queued for possible printing later with
lisedit. lisedit prints to stdout the source line containing the error, with an arrow
pointing at the corresponding column. Then the body of the error message is printed. Only
messages whose severity is larger than cutoff will be printed. If erronly is nonzero, only
lines with associated error reports will be printed.

Chapter 1: The Eli Library 5

Message is used to make an error report to the error module. Both source program
and compiler errors are reported via message. Six error severities are defined by constants
exported by the module:

NOTE The message is intended to convey additional information to the user, not to
report an error.

WARNING The message reports an anomaly that may be indicative of an error.

ERROR The message reports a definite error.

DEADLY The message reports a violation of an assertion within the compiler.

A compiler should be able to carry on after detecting any errors less severe than deadly
errors. It may be necessary to repair some internal data structures in order to guarantee
their consistency, but the repairs are usually not difficult to provide; see any standard
compiler construction text. Message returns normally after accepting a report of an error
that is less severe than a deadly error.

Violations of compiler assertions signal programming errors within the compiler itself.
Attempts to continue under such circumstances are likely to result in further corruption and
eventual catastrophic failure. Message therefore does not return after accepting a report
of a deadly error. Instead, it outputs any queued reports and terminates the program with
exit(1).

The text argument to message points to a character string describing the error. This
character string must remain unchanged until the reports are output at the end of the
compilation; message does not copy it.

grammar and source serve to locate the error in both the compiler and the source text.
The former is most useful in the case of violations of compiler assertions and limits. It
specifies the particular assertion or, in the case of a generated compiler, the specification
rule that led to the violated assertion. The latter gives the source text coordinates of the
construct the compiler was processing at the time the report was issued. Some errors are
not associated with a particular source language construct. Reports of these errors should
use NoPosition in lieu of coordinates.

At any time during the compilation, ErrorCount[severity] contains the number of
reports of class severity that have been issued so far.

If an error is reported with an invalid severity code, message sets its severity to DEADLY

after printing the message and its severity code on stderr.

If the number of errors at severity level ERROR plus the number at severity level FATAL
is greater than 10 added to the current line number divided by 20 then compilation is
aborted with a DEADLY message. When the number of lines of source is reasonably large
this effectively amounts to a limit of one of these errors for every 20 lines of source code (ie.
a 5% error rate). This error limit is not checked if ErrorInit has been called with a value
of 0 for the argument ErrLimit.

1.4 Memory Object Management

This module provides high-speed memory allocation that supports “growing” objects –
objects whose size is not known a priori. Any number of regions can be defined, and
storage managed independently by region. Within one region the storage is allocated and

6 Library Reference

freed in a last-in, first-out manner that allows freeing of a large number of objects with a
single operation.

#include "obstack.h"

void obstack_init(ObstackP obstack);

void obstack_begin(ObstackP obstack, int size);

int obstack_chunk_size(ObstackP obstack);

int obstack_alignment_mask(ObstackP obstack);

void *obstack_alloc(ObstackP obstack, int size);

void *obstack_copy(ObstackP obstack, void *data, int size);

void *obstack_copy0(ObstackP obstack, void *data, int size);

void *obstack_strcpy(ObstackP obstack, char *data);

void obstack_blank(ObstackP obstack, int size);

void obstack_grow(ObstackP obstack, void *data, int size);

void obstack_grow0(ObstackP obstack, void *data, int size);

void obstack_1grow(ObstackP obstack, int data_char);

void obstack_ptr_grow(ObstackP obstack, void *data);

void obstack_int_grow(ObstackP obstack, int data);

void obstack_blank_fast(ObstackP obstack, int size);

void obstack_1grow_fast(ObstackP obstack, int data_char);

void obstack_ptr_grow_fast(ObstackP obstack, void *data);

void obstack_int_grow_fast(ObstackP obstack, int data);

void *obstack_finish(ObstackP obstack);

void obstack_free(ObstackP obstack, void *block);

void *obstack_base(ObstackP obstack);

void *obstack_next_free(ObstackP obstack);

int obstack_object_size(ObstackP obstack);

int obstack_room(ObstackP obstack);

Each region is represented by a data structure of type Obstack. A pointer of type
ObstackP, which addresses this data structure, is used to specify the region. Here is an
example showing how a region might be declared and initialized:

Obstack obstk;

obstack_init(&obstk);

All the apparent functions operating on regions are macros. Each takes a pointer of
type ObstackP as its first argument. This pointer may be evaluated many times, so you
should not use an expression as the first argument of any of these macros. (Any arguments
other than the first are evaluated exactly once.) If you need to compute the appropriate
ObstackP, use the following strategy:

_obstack = (address expression); obstack_xxx(_obstack, ...);

Chapter 1: The Eli Library 7

The variable _obstack is of type ObstackP, and is exported by the module for use by
clients. Its value is never inspected or changed by the module itself or any of the macros.

A region is a collection of objects managed in a last-in, first-out manner. Each region
is independent of the others, and is characterized by a chunk size and an alignment. As
objects are added to the collection, blocks of memory of the given chunk size are allocated
to hold them. The address of each object in the collection is guaranteed to be divisible by
the alignment, which must be a power of 2.

When the storage already available for a collection is insufficient for an object being
added to the collection, then a new chunk is allocated. The size of the new chunk is the
minimum of the chunk size parameter and twice the size of the object to be added. Thus
the chunk size parameter does not limit the size of an object that can be stored in the
collection, but it does affect the number of system requests for storage. If it is not specified
when the collection is initialized, a default value equivalent to one virtual memory page
is used. Chunks are normally allocated by malloc or realloc, but you can substitute a
different storage allocator by re-defining the macros obstack_chunk_alloc and obstack_

chunk_realloc to be the names of your allocator functions. Be certain that your allocator
copes with memory exhaustion. Give the macro definition before including the module
interface specification:

#define obstack_chunk_alloc MyMalloc

#include "obstack.h"

After an object is added to a collection, the next available address is adjusted to be
divisible by the alignment parameter of the collection. If any address is suitable as an object
address then the alignment should be 1 (the zeroth power of 2). The default alignment value
is that suitable for an object of the primitive type double, normally the type that is most
stringently aligned.

The first macro applied to a region must be either obstack_init or obstack_begin,
both of which create an empty collection of objects. A collection initialized by obstack_

init will have the default value for its chunk size, while obstack_begin allows the user to
set that value. If the size argument of the obstack_begin call is 0 then the default value
is used. This value may be inspected or changed at any time via the operation obstack_

chunk_size. Similarly, the default alignment mask may be inspected or changed at any
time via the operation obstack_alignment_mask. These two macros may be called either
on the left side of an assignment (to change the value) or within an expression (to inspect
the value). If the chunk size is changed, it can be returned to its default value by assigning
the value 0 to obstack_chunk_size:

obstack_chunk_size(&obstk) = 0;

The alignment mask is an integer one less than the power of 2 that must divide each
object address. To make a change in the alignment mask effective, you must create an
empty object. For example, the following code guarantees that the addresses of objects
subsequently created in the collection obstk will be divisible by 4:

obstack_alignment_mask(&obstk) = 3; (void)obstack_alloc(&obstk, 0);

Once a region has been initialized, there are two basic strategies for creating objects:
allocation and growth. Objects are allocated when their size is known a priori; they are
grown when their size is not known a priori.

8 Library Reference

Allocation is the simplest strategy. Suppose that it was necessary to create an object
capable of storing an array of five integers. The call (int *)obstack_alloc(&MyStack, 5

* sizeof(int)) would create such an object in the collection MyStack, and yield a pointer
to that object. The contents of the created object are undefined. If an array of five integers
was already stored in the variable ArrayValue, and this array was to be the initial con-
tents of the created object, then the call (int *)obstack_copy(&MyStack, ArrayValue, 5

* sizeof(int)) would create and initialize an appropriate object. The operation obstack_

copy0 is identical to obstack_copy, except that it adds a single zero byte after the value
that was copied. An object whose initial contents are to be the characters of an existing
null-terminated string should be created by the operation obstack_strcpy. This operation
does not require a length specification; it determines the length from the given string.

With the growth strategy, a single object is created by a sequence of macro calls rather
than a single call. Each call causes the object to grow in size, and possibly establishes
some of the initial contents of the object. An object can be moved by the module while
that object is growing. The last call in the sequence is to either obstack_finish or some
allocation operation, which terminates the object’s growth and fixes its address.

An obstack can only accomodate a single growing object at any time. While that object
is growing, no allocation operations may be issued for the obstack. After obstack_finish
has been called, completing the growth of the object, the obstack is again able to accept
any operation. Thus the legal sequence of operations on an obstack can be described by the
following regular expression (A stands for an allocation operation and G stands for a growth
operation):

obstack_init (A | G+ (obstack_finish | A))*

Macros implementing the growth strategy parallel, for the most part, the macros im-
plementing the allocation strategy. They have the same pattern of arguments as their
allocation counterparts, but do not return a pointer to an object because no object exists
until the call of obstack_finish. To grow an object by a given amount without specifying
the initial contents of that part of the object, use obstack_blank. If an initial contents
is known, grow the object with one of the operations obstack_grow or obstack_grow0 as
appropriate.

The special operation obstack_1grow is used for placing characters into a growing object.
It’s argument is the actual value that is the initial content, rather than the address of that
value as in the other growth and allocation macros. Here is an example of how obstack_

strcpy could be implemented using obstack_1grow:

char *

obstack_strcpy(obstk, data)

ObstackP obstk; char *data;

{ register char c, *p = data;

if (p) while (c = *p++) obstack_1grow(obstk, c);

obstack_1grow(obstk, ’\0’);

return (char *)obstack_finish(obstk);

}

The growth macros check that the current chunk has enough space in it for the growth
increment. If the check fails, a new chunk is allocated and the growing object is copied into
the new chunk. Two additional operations, obstack_blank_fast and obstack_1grow_

Chapter 1: The Eli Library 9

fast, can be used when sufficient space in the current chunk can be guaranteed. These
macros are identical to their normal counterparts obstack_blank and obstack_1grow,
except that they do not check the space remaining in the current chunk. The operation
obstack_room returns the amount of free space in the current chunk.

The collection of objects in a region is managed in a last-in, first-out manner. This
means that there is an operation, obstack_free, to remove objects from the collection. A
call of obstack_free specifies a region and an object in that region. This call removes the
specified object and all objects added to the collection after the specified object was added.

If an obstack_free operation frees all of the objects in a chunk, that chunk is returned
to the underlying storage allocator. Chunks are normally returned by free, but you can
specify a different routine by re-defining the macro obstack_chunk_free to be the name of
that routine. (The macros obstack_chunk_alloc, obstack_chunk_realloc and obstack_

chunk_free must be defined consistently.)

While an object is being grown, its current base address can be obtained by calling the
macro obstack_base, its current size by calling obstack_object_size, and the address
of the first location above it by calling obstack_next_free. This allows one to build a
module that will give clients access to the contents of an immature object while it is still
growing. Don’t forget that the base address will change during the growth period if the
object outgrows the current chunk. Also, obstack_next_free can be used on the left-
hand side of an assignment, thereby providing a way to “shrink” a growing object. Its
value should never be increased, nor should it be decreased beyond the value yielded by
obstack_base.

1.5 Character String Storage

This module provides both temporary and persistent storage for arbitrary-length character
strings. Strings stored by the module can be identified by either a pointer or an integer.
The set of persistent strings can be written at any time to a text file as either a sequence
of lines, one string per line in the form of a C string denotation, or as the C definition of
an initialized data structure.

#include "csm.h"

int stostr(char *c, int l)

char *StringTable(int i);

char *NoStr

int NoStrIndex;

int numstr;

ObstackP Csm_obstk;

char *CsmStrPtr;

char *prtstcon(FILE *d, char *p)

savestr(FILE *d)

dmpstr(FILE *d)

10 Library Reference

Stostr stores a character string c of length l in the memory, returning the index of the
string. StringTable is a macro that delivers a pointer to a null-terminated string, given
the index of that string established by stostr. The number of strings currently stored is
given by numstr (initially 0); thus numstr-1 is the largest index that can be used as an
argument to StringTable.

‘csm.h’ defines the constant NoStr to be a unique character pointer that represents no
string. It also defines NoStrIndex to be a unique string index that will never be used to
represent a string. The string indexed by NoStrIndex contains no characters.

Csm_obstk is a region that can hold sets of strings. It can be managed by the operations
of the memory object allocator (see Section 1.4 [obstack], page 5). The actual characters
of the strings stored by stostr are stored in Csm_obstk. CsmStrPtr is a pointer that can
be set by a client of the character storage module to point to a string in Csm_obstk. When
this pointer is passed to stostr, stostr assumes that another copy of the string need not
be stored.

Prtstcon prints the string pointed to by p on the current line of file d. The string
is printed as a C string constant with the quotes omitted. This function can be omitted
from the module by compiling with the C flag -DNOPRINT. Dmpstr prints the set of strings
StringTable(0) through StringTable(numstr-1) on file d as a sequence of lines. This
function can also be omitted from the module by compiling with the C flag -DNOPRINT.

Savestr writes the current state of the module on file d, in the form of C initialized
variables. Only the strings stored by stostr will be written to d. This file can be used to
create a copy of the module initialized to the current state by naming it ‘csmtbl.h’ and
recompiling the module. The save function is available only if the module was compiled
with the C flag -DSAVE, and if the printing routines were not omitted.

1.6 Character String Arithmetic

#include "strmath.h"

char *stradd(char *a, char *b, int base);

char *strsub(char *a, char *b, int base);

char *strmult(char *a, char *b, int base);

char *strdivf(char *a, char *b, int base);

char *strdivi(char *a, char *b, int base);

char *strrem(char *a, char *b, int base);

char *strpow(char *a, char *b, int base);

char *strneg(char *a, int base);

char *strsqrt(char *a, int base);

char *strnorm(char *a, int oldbase, int newbase, char *symbols);

char *strnumb(char *a, int *flag, int base);

int strmath(int select, ...);

This package is made available by adding the following line to a type-specs file:

$/Tech/strmath.specs

Chapter 1: The Eli Library 11

The strings accepted by this package are essentially those of most higher level languages:

[+/-][d*][.][d*][e[+/-]d*]

Here [] indicate optional parts, +/- indicates that a sign may be present, d indicates
digits in the chosen base, * indicates repetition, . is a period representing the separation
between the integer and fractional parts of the number, and e stands for any one of the expo-
nent symbols given in the control string EXP SYMBOL. Strings generated by the package
have the same formats. The actual characters used to represent digits, signs, fractional
separators and exponent symbols are determined by default or by settings established by
the strmath operation.

In general (with the exception of strnumb) the operations return a NULL pointer when
an error is found in the input values or occurs during computation (e.g., overflow). When
a null value is returned, the global errno is set to indicate the type of error. If multiple
errors occur, only the first is reported.

When operations are cascaded, with the result of one being used as an operand of
another, there is no need to check each operation individually. If an error occurs in an early
operation, the resulting NULL pointer will be an invalid input to the next operation, thus
guaranteeing that it will yield a NULL pointer. The NULL pointer will therefore propagate,
and appear as the final value. Since only the first error is reported, the global errno will
not be changed when any of the subsequent invalid inputs are detected.

The error codes used are defined in <errno.h>:

EINVAL An error in the format of an input value made it invalid. (The function strnumb

can be used to assist in diagnosing these problems.)

EDOM The given value falls outside the domain of the operation (e.g. it is too large,
or negative when a positive value is required).

ERANGE The result of the computation cannot be adequately represented (e.g., divide
by zero, overflow).

The usual rules for the use of errno apply: It is not explicitly cleared. If desired, this
must be done before calling the desired function. It is set by these functions only if an error
occurs.

Most of the operations exported by the strmath module return pointer values. These
pointers address the result string, which occupies space in a static array. All operations
use the same static array for their results. Thus the pointer returned by an operation
will be valid only until another operation of the module completes. It is therefore the
responsibility of each client of the module to make a copy of any result string whose value
must be preserved beyond the completion of the next strmath operation.

The dyadic operations stradd, strsub, strmult, strdivf (full divide, possibly yielding
a fractional part), strdivi (integer quotient), strrem (integer remainder) and strpow

perform the indicated operation on two string operands; the monadic operations strneg

and strsqrt perform the indicated operation on one string operand. In each case the
operation is performed in the radix given by base, and the result is delivered as a string or
NULL.

The strnorm operation converts a from radix oldbase to radix newbase, normalizing it
in the process, and the result is delivered as a string. The format of that string depends on
the symbols argument:

12 Library Reference

symbols=NULL
Whole number and fraction parts separated by the defined fractional separator
unless the result can be expressed as an integral value, exponent marker and
exponent if the length would exceed integer_size digits.

symbols is an empty string
Sequence of digits if the length does not exceed integer_size digits, otherwise
NULL.

symbols is a non-empty string
A fractional separator is guaranteed to appear in the result. The first character
of symbols is taken as the exponent marker. If there are additional character
in the string then they will be taken as the fractional separator, the minus sign,
and the plus sign respectively. (The normally defined for these purposes will
be used if they do not appear in symbols.)

If the intent of the operation is simply to perform radix conversion, use symbols=NULL.
The resulting string will be in the normal format delivered by other operations of this
module. Using an empty string for symbols guarantees that the result is in integer form.
(If this is not possible, the result will be NULL.) This guarantee is important when the
number is being output in a position where an integer is required. Using a non-empty
string for symbols guarantees that the result is in floating-point format. It also allows one
to easily vary the characters used for the exponent marker, fractional separator, and signs.
This is important when the number is being output where a real is required.

The strnumb operation is intended for input of numbers, particularly in cases where
there may be a radix marker at the end of the number string. It scans the string a and
interprets it as a value in the radix given by base. If an error is found, the appropriate error
value is returned in the variable flag. Otherwise flag will be set to zero. The operation
returns a pointer to the last character scanned. This character will be the character at
which the error was detected if flag is nonzero, otherwise it is the first character that
does not belong to the number. Termination of the scan is controlled by the setting of
STRM_CHECK_DIGITS.

The strmath operation is used to vary some characteristic of the module. It is called
with a selection symbol given in the following table, and one additional argument which
is the value of the characteristic being set. It returns the value 1 if the requested setting
succeeded. Otherwise 0 is returned and no selected value has been changed. The caller
is responsible for ensuring that the contents of the string arguments are disjoint sets as
described below.

strmath(STRM_DIGITS,‘string’)

Change the string defining the set of valid digits. For example,
"0123456789ABCDEF" is a string that defines a set of digits for bases 2-16.
Output strings are built by indexing this string to obtain the representation of
each computed digit. The matching of alphabetic characters in input strings
depends upon the setting of STRM_IGNORE_CASE. Unpredictable results will be
obtained if any character is repeated.

The default value is the string consisting of the digits ’0’-’9’, the upper case
alphabetic characters, the lower case alphabetic characters, and the characters

Chapter 1: The Eli Library 13

’%’ and ’$’. This string provides 64 distinct characters, thus supporting any
radix not greater than 64.

strmath(STRM_EXP_SYMBOLS,‘string’)

Change the string defining the set of characters to be accepted as represen-
tations of the exponent symbol. Any character in the string is acceptable in
input strings; in output strings the first member of the set is used. Unpre-
dictable results will be obtained if any character is repeated or is used as a
digit.

The default value of this string is "^".

strmath(STRM_SIGNS,‘string’)

Change the string defining the set of characters to be accepted as represen-
tations of negative and positive signs. The first element of the string is the
character representing a negation, and the remainder are all taken as represen-
tations of a positive value. In output strings the first element is used to show
negation, and the second value to represent a positive sign (if one is requested).
Unpredictable results will be obtained if any character is repeated or is used as
an exponent symbol or digit.

The default value of this string is "-+".

strmath(STRM_SEPARATORS,‘string’)

Change the string defining the set of characters to be accepted as representa-
tions of the fractional separator. Any are acceptable in input strings; in output
strings the first element of the set is used. Unpredictable results will be ob-
tained if any character is repeated or is used as a sign, exponent symbol or
digit.

The default value of this string is ".".

strmath(STRM_EXP_BASE,‘integer’)

Define the radix assumed for the exponents of numbers. If this value is zero, the
exponent radix is taken to be the same as the number radix, which is supplied
on each call to the strmath functions. Otherwise the specified value is used as
the exponent radix, independent of the number radix.

strmath(STRM_INTEGER_SIZE,‘integer’)

Set the maximum number of digits that a representation of an integer may
have. This value, plus STRM_ROUND_SIZE, may be no greater than ARITH_SIZE.
Values with more than STRM_INTEGER_SIZE significant digits will be represented
as values with exponents, even if integral in value.

The default value is ARITH_SIZE-2.

strmath(STRM_ROUND_SIZE,‘integer’)

Set the number of additional digits a value may have a value may have if not
represented as an integer. This value, plus STRM_INTEGER_SIZE, may be no
greater than ARITH_SIZE. Values with more than STRM_INTEGER_SIZE+STRM_

ROUND_SIZE significant digits will be rounded on output to values with no more
than that STRM_INTEGER_SIZE+STRM_ROUND_SIZE digits.

The default value is 2.

14 Library Reference

strmath(STRM_ROUNDING,‘mode’)

Select the rounding mode to be applied to output values. The following modes
are recognized:

STRM_EVEN_ROUND

The output value is rounded to the nearest value representable in
the given number of digits. If two values are equally near, the one
with an even last digit will be returned. This the default setting.

STRM_ZERO_ROUND

The output value is rounded to the value representable in the given
number of digits that is closest to and no greater in magnitude.

STRM_UP_ROUND

The output value is rounded to the value representable in the given
number of digits that is closest to but no less.

STRM_DOWN_ROUND

The output value is rounded to the value representable in the given
number of digits that is closest to but no greater.

STRM_HAND_ROUND

The output value is rounded to the nearest value representable in
the given number of digits. If two values are equally near, the one
with the greater magnitude will be returned (as is normally done
when computing by hand).

strmath(STRM_DENORMALIZE,‘Flag’)

Select the treatment of values with exponent -1. ‘Flag’=1 allows values with
exponents that would normally be -1 to be represented with a 0-valued digit
before the fractional separator on output. If ‘Flag’=0, then the initial digit of
an output value will always be nonzero.

The default setting is 1.

strmath(STRM_INEXACT,‘Flag’)

Select the treatment of inexact values. (An inexact value is one that has lost
digits in the course of computation, or whose value was derived from an inexact
value.) ‘Flag’=1 indicates that input values containing a fractional separator
should be regarded as inexact, and that a fractional separator and fractional
part should be included on output of any inexact value. ‘Flag’=0 indicates that
all input values should be regarded as exact, and that no fractional separator
should be included on output if the fractional part of the value being output is
zero.

The default setting is 1.

strmath(STRM_CHECK_DIGITS,‘Flag’)

Select the treatment of non-digit characters on input. ‘Flag’=1 indicates that
all characters of a string be checked on input to ensure that they are valid digits
and are legitimate in the specified number radix. If this is not so, an error is
reported by the operation reading the number. ‘Flag’=0 indicates that the scan

Chapter 1: The Eli Library 15

should end with the first character that is not legitimately part of the number,
and no error is to be reported signalled.

The default setting is 1.

strmath(STRM_IGNORE_CASE,‘Flag’)

Select the treatment of the case of letters representing digits on input. ‘Flag’=1
indicates that the case of letters in input values, and the case of letters in the
STRM DIGITS string, is to be ignored when matching and defining the value
of elements of an input number. ‘Flag’=0 indicates that case is significant.

The default setting is 1.

1.7 Unique Identifier Management

#include "idn.h"

int dofold;

prtidnv(FILE *d, int i)

saveidn(FILE *d)

dmpidn(FILE *d)

mkidn(char *c, int l, int *t, int *s)

These functions implement the concept of unique identifiers. The representation is an
integer, the index of the identifier’s string in the character string memory (see Section 1.5
[storage], page 9).

‘idn.h’ defines the constant NoIdn to be a unique integer that is never used to represent
an identifier. The identifier string represented by NoIdn contains no characters.

Prtidnv prints the string for identifier i on the current line of file d. This function can
be omitted from the module by compiling with the C flag -DNOPRINT. Dmpidn prints the
current state of the lookup mechanism on file d as a sequence of lines. This function can
also be omitted from the module by compiling with the C flag -DNOPRINT.

Saveidn writes the current state of the module on file d, in the form of C initialized
variables. This file can be used to create a copy of the module initialized to the current
state by naming it ‘idntbl.h’ and recompiling with the C flag -DINIT. The save function
is available only if the module was compiled with the C flag -DSAVE, and if the printing
routines were not omitted. An initial state is usually created by adtinit.

Mkidn determines the unique identifier for a string c of length l. If the string has not been
previously passed to mkidn then it is assigned the first available location in the character
string memory, and the index of that position is stored in the location pointed to by s . The
value pointed to by t is noted but not changed. If the string has previously been passed to
mkidn then the character string memory index assigned when it was first passed to mkidn

is stored in the location pointed to by s, and the value of t noted at that time is stored
in the location pointed to by t. Mkidn can be used as a processor by the lexical analysis
portion of an Eli-generated program (see Section “Token Processors” in Lexical Analysis.)

16 Library Reference

The variable dofold controls the interpretation of upper and lower case alphabetic char-
acters by mkidn: If dofold contains 0 then upper and lower case versions of the same letter
are considered to be distinct; otherwise no distinction is made between upper and lower case
versions of the same letter. This variable is initially 0, and must be explicitly set nonzero
if desired. If it is known that upper and lower case letters must always be distinct, the
variable and associated folding code can be removed from the module by compiling it with
the C flag -DNOFOLD.

1.8 Contour-Model Environment

This module implements a standard contour model for name analysis. The data structure
is a tree of scopes, each of which can contain an arbitrary number of definitions. A def-
inition is a binding of an identifier to an object in the definition table (see Section “top”
in PDL Reference Manual); the definition does not carry any other information itself. The
environment module provides operations for building scope trees, adding definitions to spe-
cific scopes, and searching individual scopes or sequences of scopes for the definition of a
particular identifier.

The module is capable of building multiple trees of scopes, and it places no constraints
on the sequence of construction, definition and lookup operations.

#include "envmod.h"

Environment NewEnv ();

Environment NewScope (/* Environment e */);

int AddIdn (/* Environment e, int i, DefTableKey k */);

DefTableKey DefineIdn (/* Environment e, int i */);

DefTableKey KeyInScope (/* Environment e, int i */);

DefTableKey KeyInEnv (/* Environment e; int i */);

The type Environment is a pointer to the data structure representing the tree of scopes.
Identifiers are represented by integers. The bindings contained in a scope are between
integers and arbitrary pointers. These arbitrary pointers are all obtained via two operations
external to the environment module:

DefTableKey NoKey

Returns the same value on every invocation.

DefTableKey NewKey()

Returns a different value on each invocation. The value returned by NoKey is
never returned by NewKey.

NoKey and NewKey may be supplied by the user of Eli, or they may be exported by a
generated definition table module (see Section “Keys” in PDL Reference Manual).

NewEnv creates a new tree consisting of a single, empty scope and returns a reference to
that empty scope. NewScope creates a new empty scope as a child of the scope referenced
by its argument and returns a reference to that empty scope.

AddIdn checks the scope referenced by its e argument for a definition of the identifier
specified by its i argument. If no such definition is found, a definition binding the identifier

Chapter 1: The Eli Library 17

i to the definition table object specified by k is added to scope e. AddIdn returns the value
0 if a definition for i already exists, and returns 1 otherwise.

DefineIdn behaves exactly like AddIdn, except that if the referenced scope contains no
definition of i then DefineIdn obtains a value from NewKey and binds i to that value in
scope e. In addition, DefineIdn always returns the definition table key associated with i.

KeyInScope checks the scope referenced by its e argument for a definition of the identifier
specified by its i argument. If no such definition is found, NoKey is returned. If a definition
is found, the definition table object bound to i is returned.

KeyInEnv behaves the same way as KeyInScope except that if no definition for i is found
in scope e then the search continues through successive ancestors of e. If no definition for
i is found in e or any of its ancestors, NoKey is returned. Otherwise the definition table
object bound to i is returned.

If any function is invoked with an invalid environment argument ((ENVIRONMENT *)

0), a deadly error ("CurrEnv: no environment") is reported (see Section 1.3 [Source text
coordinates and error reporting], page 3 for a discussion of deadly errors).

1.9 Storage Layout

This module provides operations that determine the storage requirement of a composition
of two objects, each of which has its own storage requirement. The storage requirement
of an object is determined by the number of memory units it occupies, the number by
which its address should be divisible, and whether its address is the address of its first
memory unit or the address of the first memory unit above it. Two distinct composition
strategies, concatenation and overlaying, are supported by this module. (When two objects
are concatenated they are allocated adjacent areas of memory; when they are overlaid they
share memory.)

#include "Storage.h"

StorageRequired NewStorage(/* int size, align, top; */);

StorageRequired CopyStorage(/* StorageRequired a; */);

StorageRequired ArrayStorage(/* int n; StorageRequired a; */);

int StorageSize(/* StorageRequired a; */);

int StorageAlignment(/* StorageRequired a; */);

int Concatenate(/* StorageRequired a, b; */);

int Overlay(/* StorageRequired a, b; */);

The type StorageRequired is a pointer to the data structure representing a stor-
age requirement. There is one predefined value, NoStorage, of type StorageRequired.
NoStorage is a null pointer, and represents “no storage requirement”.

NewStorage creates a new description of a storage area requiring size memory units,
whose address must be divisible by align, and returns a reference to that description. If
top is TRUE then the address of the storage area is the address of the first memory unit
above the area; otherwise the address is the address of the first memory unit of the area
itself. CopyStorage creates a new description of a storage area whose requirements are
identical to those of a and returns a reference to that description. ArrayStorage creates

18 Library Reference

a new description of a storage area for an array of n elements, each described by a and
returns a reference to that description.

StorageSize returns the number of memory units required by storage area a. The
function StorageAlignment returns the number by which the address of storage area a

must be divisible.

Concatenate determines the requirements of the storage area resulting when storage
area b is concatenated to storage area a. Area b is placed above area a if the address of
area a is the address of its first memory unit. If the address of area a is the address of the
first memory unit above that area, then area b is placed below area a. In either case, area
b is placed as close to area a as possible, without overlapping it. The description referenced
by a is changed to describe the result of the concatenation, and Concatenate returns the
relative address of area b within that resultant area.

Overlay determines the requirements of the storage area resulting when storage area
b is overlaid onto storage area a. The description referenced by a is changed to describe
the result of the overlay, and Overlay returns the relative address of area b within that
resultant area.

This module should be made available to the Eli specification by including the following
line in a type-specs file:

$/Tech/Storage.specs

Index 19

Index

_obstack . 6

A
AddIdn . 16
alignment . 7
Allocation . 8
ArrayStorage . 17

C
chunk size . 7
ColOf . 3
Concatenate . 17
CoordPtr . 3
CopyStorage . 17
csm.h . 9
Csm_obstk . 9
CsmStrPtr . 9
curpos . 3

D
DEADLY . 5
DefineIdn . 16
dofold . 15
dumpidn . 15
dumpstr . 9

E
envmod.h . 16
err.h . 3
ERROR . 5
ErrorCount . 3
ErrorInit . 3

F
finlBuf . 2
frame . 1
free . 9

G
growth . 8

I
idn.c . 15
idn.h . 15
initBuf . 2

K
KeyInEnv . 16
KeyInRange . 16

L
length of a line . 3
LineNum . 3
LineOf . 3
lisedit . 3

M
malloc . 7
memory exhaustion . 7
message . 3
mkidn . 15

N
NewEnv . 16
newlines . 3
NewScope . 16
NewStorage . 17
NoCoord . 3
NoIdn . 15
NoPosition . 3
NoStorage . 17
NoStr . 9, 10
NoStrIndex . 9, 10
NOTE . 5
NUL . 3
numstr . 9

O
obstack . 6
obstack_1grow . 6, 8
obstack_1grow_fast . 6, 9
obstack_alignment_mask . 6, 7
obstack_alloc . 6, 8
obstack_base . 6, 9
obstack_begin . 6, 7
obstack_blank . 6, 8
obstack_blank_fast . 6, 8
obstack_chunk_alloc . 7, 9
obstack_chunk_free . 9
obstack_chunk_realloc . 7, 9
obstack_chunk_size . 6, 7
obstack_copy . 6, 8
obstack_copy0 . 6, 8
obstack_finish . 6, 8
obstack_free . 6, 9
obstack_grow . 6, 8

20 Library Reference

obstack_grow0 . 6, 8
obstack_init . 6, 7
obstack_int_grow . 6
obstack_int_grow_fast . 6
obstack_next_free . 6, 9
obstack_object_size . 6, 9
obstack_ptr_grow . 6
obstack_ptr_grow_fast . 6
obstack_room . 6, 9
obstack_strcpy . 6, 8
Overlay . 17

P
prtidnv . 15
prtstcon . 9

R
realloc . 7
refillBuf . 2

S
saveidn . 15
savestr . 9
source.h . 2
SrcBuffer . 2

SrcBufPtr . 2
SRCFILE . 2
Storage.h . 17
StorageAlignment . 17
StorageRequired . 17
StorageSize . 17
stostr . 9
stradd . 10
strdivf . 10
strdivi . 10
StringTable . 9
strmath . 10
strmult . 10
strneg . 10
strnorm . 10
strnumb . 10
strpow . 10
strrem . 10
strsqrt . 10
strsub . 10

T
TEXTSTART . 2

W
WARNING . 5

	The Eli Library
	Using Frame Modules
	Text Input
	Source Text Coordinates and Error Reporting
	Memory Object Management
	Character String Storage
	Character String Arithmetic
	Unique Identifier Management
	Contour-Model Environment
	Storage Layout

	Index

