
1 Products and Parameters .

A product (e.g.: :exe) is a Unix file, a directory or a list of files that can be requested
from Eli. Parameters (e.g.: +fold) allow the requestor to control some characteristics of
the requested product.

Product files can be displayed by appending >, file-lists can be viewed with :viewlist

and generated directories by listing their contents with !ls. A single file named ‘f’ can be
selected from a directory by appending /f to the request for that directory.

For further details see Section “top” in Eli Products and Parameters.

1.1 Processor Generation

:exe Executable file containing the generated processor.

:source File-List with all source and include files making up the processor.

:allspecs

File-List with all files defining a processor.

:gencode File-List with all files generated by Eli from your specifications.

:fwGen Directory with all files specified by one .fw file.

:ligaResults

File-List with all files generated by Liga from your specifications.

+define cpp directive for C compilation.

+fold To suppress case distinctions in identifiers and keywords.

+ignore To switch off the verification of the presence of certain include files.

+parser Selects the parser generator:pgs/cola.

1.2 Generating Specifications

:bnf File containing complete concrete grammar in BNF notation.

:consyntax

File containing complete concrete grammar in EBNF notation.

:pgram File containing complete parsing grammer as given to the parser generator.

:abstree File containing complete tree grammar.

:inst File-List containing instantiated generic module.

:kwd Recognize specified literals as identifiers.

+instance, +referto

For instantiation of specification modules.



1.3 Diagnostics

:warning File containing Warnings noted while deriving a product.

:error File containing Errors noted while deriving a product.

:warn, :err

Unprocessed warning and error messages.

:help Executable for browsing Warning and error messages of a derivation. Messages
contain references to documentation.

:parsable

File containing verification protocol of the parsability of the parsing grammar
(LALR(1)).

:showFe, :showMe

File-List with 3 files containing information about the Lido specifications.

:ExpInfo,:OrdInfo,:OptimInfo

Files with Information from Liga on remote attribute access, attribute depen-
dencies, attribute storage.

:gorto Start gorto, a graphical tool for attribute dependence analysis.

1.4 Testing a Generated Processor

:stdout Standard output from a test run, for example

input +cmd=(x.specs:exe):stdout

:run Execute the generated processor, for example

. +cmd=(x.specs:exe) input :run

:output Output files from a test run, for example

input +cmd=(x.specs:exe) :output !ls -l

:dbx, :gdb

Debug a program interactively at the source level.

:mon Monitor a program at the specification level.

:mondbx, :mongdb

Monitor a program at the specification level.

+arg Command line arguments for processor execution (only usable with :mon)

+debug Flag to request debugging information in object files.

+input Directory containing files to be made available during execution.

+monitor Flag to request monitoring support.

+printtokens

Flag to request that tokens be printed as they are read.

+stdin File to be made available as standard input.



1.5 Producing Formatted Documents

:ps PostScript file generated from a TeX file.

:fwTex TeX file generated from a .fw file.

:fwTexinfo

Hypertext document generated from a .fw file.

1.6 Information About the Derivation

!:redo Tell Eli to redo a derivation step, even though no inputs to it have changed.

!:test Ask Eli to check whether an object has been modified.

!:inputs A list of the objects on which this object directly depends.

!:outputs

A list of the objects directly depending on this object.



2 Eli Specifications

The Eli user describes the subproblems of a particular text processing problem in files
of different “type”. The type is indicated by the file name extension. Any of these files
can contain C-style comments and preprocessor directives such as #include, #define and
#ifdef.

.specs A collection of subproblem descriptions, one per line:

word.gla

$/Tool/lib/Name/Nest.gnrc :inst

symbol.lido

.gla A description of the token structure of the input text:

ident : C_IDENTIFIER

string: $’ (auxPascalString) [mkstr]

numb : $[0-9] [mkint]

.con A description of the phrase structure of the input text:

def: set_name ’=’ ’{’ body ’}’ .

body: element+ .

cond : ’if’ exp ’then’ stmt $’else’.

.lido A description of the structure of a tree and the computations to be carried out
on that tree:

ATTR Sym: int;

SYMBOL set_name INHERITS Entity END;

SYMBOL text COMPUTE

PTGOut(

PTGTable(

CONSTITUENTS set_name.Sym

WITH (int, ADD, ONE, ZERO)));

END;

RULE r_wall: wallspec ::= ’wall’ pos ’;’

COMPUTE

wallspec.done = setwall(pos.x, pos.y);

END;

.map A description of the mapping between the parsing and the tree grammar.

.ctl Options for evaluator generation.

.h, .c C modules for user-supplied functions, variables, types etc.

.head Headers and macro definitions to be inserted into code generated from Lido:

#include "myproc.h"

#define MyValue(s) MyArray[s]

.init, .finl

C code to be executed before any processing begins (.init) or after all other
processing is complete (.finl):



{ int s;

s = GetValue(speed,1);

setdelay(1000000/s); }

.ptg A description of structured output text:

Seq: $ $

List: $ ",\n\t" $

.pdl A property definition language:

code : mytype; "kcode.h"

size : int;

.oil A description of operator overloading:

OPER iAdd(integer, integer): integer;

OPER rAdd(real, real): real;

INDICATION Plus: iAdd, rAdd, sUnion;

COERCION Float(integer): real;

.clp A description of command line arguments for the generated processor:

speed "-s" int

"-s determines steps per second";

.fw Combines a collection of strongly-coupled specifications with documentation
describing their relationships:

@O@<c.ptg@>@{

Seq: $ $

@}

@O@<c.lido@>@{

SYMBOL Entity INHERITS IdPtg END;

@}

.delit Specifies literals appearing in a type-‘con’ file that are to be recognized by
special routines.

.gnrc Defines a generic specification module.



3 User Interface

Single characters are quoted with \ in an Eli request; strings are quoted by enclosing them
in apostrophes (’). Spaces and tabs are ignored, and # marks the rest of the line as a
comment. The request ? starts the documentation browser.

For further details see Section “top” in Interacting with Eli.

object Make a product up-to-date with respect to its inputs.

x.specs+monitor:exe # Make up-to-date

x.specs:parsable< # To your editor

x.specs> # To standard output

x.specs:exe>x.exe # To file x.exe

x.specs:source>src # To directory src

! Execute the remainder of the line as a shell command. If ! is preceded by
object, append the name of the up-to-date product to the end of the line.

= Query or set variables.

?= # Show list of all variables.

Dir=? # Show ‘Dir’ variable meaning.

History= # Show the value of ‘History’.

ErrLevel=1 # Set ‘ErrLevel’ to ‘1’.

control character

Request editing with history. Starred commands accept a repeat count (e.g.
‘+ESC 4 ^P+’). Arrow keys can be used to move in the history.

^A Move to the beginning of the line

^B* Move left in the line (left arrow)

^E Move to the end of the line

^F* Move right in the line(right arrow)

^N* Next request in history (down arrow)

^P* Previous request in history (up arrow)

^R* Request a substring to search for

String starts line if it begins with ^

Search forward if repeat count given


