
Abstract Syntax Tree Unparsing

$Revision: 2.17 $

Compiler Tools Group
Department of Electrical and Computer Engineering

University of Colorado
Boulder, CO, USA

80309-0425

i

Table of Contents

1 Using an Unparser . 3

2 Available Kinds of Unparser 7
2.1 Textual unparser . 7

2.1.1 Computations for plain productions . 8
2.1.2 Computations for LISTOF productions 10

2.2 Structural unparser . 10
2.2.1 Computations for plain productions . 11
2.2.2 Computations for LISTOF productions 12
2.2.3 Languages describing tree structure . 13

3 Changing Structure or Representation 15
3.1 Overriding PTG patterns . 15
3.2 Changing IdemPtg computations . 16

4 Deriving an Unparser . 19
4.1 Establishing a basis . 19
4.2 Deriving textual unparsers . 21
4.3 Deriving structural unparsers . 22
4.4 Obtaining the structure definition . 23
4.5 Deriving multiple unparsers . 23
4.6 Deriving unparsers from sub-grammars . 24

Index . 27

1

Parsing is the process of constructing a tree from a string of characters; unparsing is the
reverse: constructing a string of characters from a tree.

A so-called “pretty-printer” is an example of a processor that incorporates an unparser:
It reads arbitrarily-formatted text, builds a tree representing the text’s structure, and then
unparses that tree using appropriate formatting rules to lay out the text in a standard way.

An unparser is also used to produce a textual representation of a tree-structured data
object. One example of such a textual representation is the XML file used to transmit a
data object over the Internet; another is a Java program that can be executed to re-build
the object.

Arbitrary unparsers can be specified by means of a combination of attribute computa-
tions and PTG (see Section “Pattern Specifications” in PTG: Pattern-Based Text Gener-
ator) patterns. Writing these specifications by hand is a tedious process for a large tree
grammar.

Given a specification of the LIDO rules defining a tree grammar, Eli can derive the
specifications of certain common unparsings. The result is a FunnelWeb file (see Section
“Introduction” in FunnelWeb) that is used directly to produce output routines for a gen-
erated processor. Each of the common unparsings has certain characteristics that must be
understood to use it effectively.

Although a pre-packaged unparsing may suffice for almost all of the rules of a particular
tree grammar, a user may need to make a few changes in structure or representation. The
unparser generator provides facilities for specifying such changes, while retaining the bulk
of the generated attribute computations and PTG patterns.

Finally, an unparser must be derived from a specification of the tree grammar to be
unparsed together with specifications of any changes in representation. The resulting Fun-
nelWeb file must either be extracted or incorporated into the derivation of the processor
using it.

Chapter 1: Using an Unparser 3

1 Using an Unparser

In order to make the discussion concrete, we will use a trivial expression language as an
example. That language is defined by the FunnelWeb file ‘example.fw’:

@O@<example.lido@>==@{

RULE PlusExp: Expression ::= Expression ’+’ Expression END;

RULE StarExp: Expression ::= Expression ’*’ Expression END;

RULE Parens: Expression ::= ’(’ Expression ’)’ END;

RULE IdnExp: Expression ::= Identifier END;

RULE IntExp: Expression ::= Integer END;

RULE CallExp: Expression ::= Identifier ’(’ Arguments ’)’ END;

RULE ArgList: Arguments LISTOF Expression END;

@}

@O@<example.gla@>==@{

Identifier: C_IDENTIFIER

Integer: C_INT_DENOTATION

@}

@O@<example.con@>==@{

Axiom: Expression .

Expression: Expression ’+’ Term / Term .

Term: Term ’*’ Factor / Factor .

Factor:

Identifier /

Integer /

Identifier ’(’ Arguments ’)’ /

’(’ Expression ’)’ .

Arguments: Expression // ’,’ .

@}

@O@<example.map@>==@{

MAPSYM

Expression ::= Term Factor .

@}

The non-literal terminal symbols Integer and Identifier are defined by canned de-
scriptions. According to their definitions (see Section “Available Descriptions” in Lexical
Analysis), C_IDENTIFIER uses the token processor mkidn to establish the internal value of
the terminal symbol, and C_INT_DENOTATION uses mkstr.

The concrete grammar and mapping specification together provide three precedence lev-
els of Expression (Expression, Term and Factor) to disambiguate the dyadic computation
rules. Parentheses can be used to override the defined precedence and association, and their
presence is reflected in the tree.

Finally, the concrete grammar specifies the comma as the argument separator in proce-
dure calls. This fact is not, however, explicit in the tree.

4 Abstract Syntax Tree Unparsing

How could a pretty-printer for this language be constructed? Eli is capable of generating
an unparser specification from the FunnelWeb file given above. That specification is, itself,
a FunnelWeb file. These two FunnelWeb files, plus some additional information, provide
a complete definition of the pretty-printer. Suppose that the additional information will
be provided by a FunnelWeb file ‘Add.fw’. Here is a type-‘specs’ file that will define the
pretty-printer:

example.fw

example.fw :idem

Add.fw

The first line describes the file defining the language, the second describes the textual un-
parser derived from the language definition (see Chapter 4 [Deriving an Unparser], page 19),
and the last describes the file defining the additional information. A processor is derived
from this type-‘specs’ file in the usual way (see Section “exe – Executable Version of the
Processor” in Products and Parameters Reference).

‘Add.fw’ must specify three additional pieces of information to complete the pretty-
printer:

• The formatting strategy.

• Which node of the tree to print.

• The argument list separators.

Our sample language involves only expressions, so the formatting strategy can be spec-
ified by instantiating a library module used to format C programs:

$/Output/C_Separator.fw

The generated unparser specification establishes a type-PTGNode value for the IdemPtg

attribute of each of the tree nodes. Because this value was created with the help of the
library module defined by ‘C_Separator.fw’ it should be written to the standard output
stream by applying the routine Sep_Out to it:

SYMBOL Axiom COMPUTE Sep_Out(THIS.IdemPtg); END;

Finally, we can ensure that commas separate the arguments by overriding the generated
IdemPtg computation for the argument list. The complete FunnelWeb file ‘Add.fw’ would
be:

@O@<Add.specs@>==@{

$/Output/C_Separator.fw

@}

@O@<Add.lido@>==@{

SYMBOL Axiom COMPUTE Sep_Out(THIS.IdemPtg); END;

RULE: Arguments LISTOF Expression

COMPUTE

Arguments.IdemPtg=

CONSTITUENTS Expression.IdemPtg SHIELD Expression

WITH (PTGNode, PTGArgSep, IDENTICAL, PTGNull);

END;

@}

Chapter 1: Using an Unparser 5

@O@<Add.ptg@>==@{

ArgSep: $ { "," [Separator] } $

@}

The [Separator] function call insertion in the pattern allows the module defined by
‘C_Separator.fw’ to provide appropriate layout characters between the elements of an
expression to implement the desired formatting.

Chapter 2: Available Kinds of Unparser 7

2 Available Kinds of Unparser

Eli is capable of generating specifications for the following kinds of unparsers:

Textual Print a “source text” representation of the tree. This kind of unparser is most
useful for processors that solve a “source-to-source” translation problem, such
as pretty-printing or language extension.

Structural Print a “structural” representation of the tree. This kind of unparser is most
useful for debugging applications, and for processors that output textual rep-
resentations of tree-structured data objects.

2.1 Textual unparser

A textual unparser creates source text which, when parsed, results in the tree that was
unparsed. For example, the pretty-printer described above accepted a sentence in the
expression language and built a tree. It then unparsed that tree to produce an equivalent
sentence in the expression language that was formatted in a particular way. If the resulting
sentence were parsed according to the rules of the expression language, the result would be
the tree from which it had been created.

Consider the tree representing the following sentence in the expression language:

a((b+c)*d, e)

None of the terminal symbols () + * is stored explicitly in the tree. Thus the textual
unparser must reconstruct these terminal symbols from the LIDO rules defining the tree
nodes.

The terminal symbol , doesn’t appear in any of the LIDO rules, and therefore it cannot
be automatically reconstructed by the textual unparser. Additional information must be
provided by the user to insert it into the unparsed text. This is a common consequence of
using LISTOF productions.

Our definition of the tree grammar for the expression language contains the following
rule:

RULE Parens: Expression ::= ’(’ Expression ’)’ END;

The purpose of this rule is to support the unparser by retaining information about the
presence of parentheses used to override the normal operator precedence. Such parentheses
result in a Parens node in the tree, and the unparser can then use this LIDO rule to
reconstruct the parentheses.

Parens is an example of a chain rule, in which the left-hand non-terminal symbol appears
exactly once as the only non-terminal symbol on the right-hand side. Such chain rules are
often eliminated from a tree grammar, because they have no significance to the computations
it supports. If a textual unparser is to be generated, however, then either a chain rule must
be in the tree grammar or there must be additional information that allows the unparser
to reconstruct its terminal symbols.

One important aspect of the textual form of the program that is missing from the
LIDO rules is how to separate the basic symbols. For example, consider a CallExp in the
expression language:

8 Abstract Syntax Tree Unparsing

a(b, c)

There is no information in the LIDO rules about whether a space should precede and/or
follow a (or ,. Spacing is important for making the text readable, however, and cannot
simply be ignored.

2.1.1 Computations for plain productions

A generated textual unparser defines the following computation (two attributes are used to
simplify overriding, see Section 3.2 [Changing IdemPtg computations], page 16):

ATTR IdemPtg, IdemOrigPtg: PTGNode;

CLASS SYMBOL IdemReproduce COMPUTE

SYNT.IdemOrigPtg=

RuleFct("PTGIdem_", RHS.IdemPtg, TermFct("PTGIdem_"));

SYNT.IdemPtg=THIS.IdemOrigPtg;

END;

The class symbol IdemReproduce is inherited by every non-terminal symbol appearing on
the left-hand side of a plain production. For example, it is inherited by Expression and
Axiom in the textual unparser specification generated from the expression language defini-
tion.

This computation invokes a function specific to the LIDO rule and, if the rule contains
any instances of non-literal terminal symbols, a function specific to each. For example, the
effect of Expression inheriting IdemReproduce is to carry out computations at the StarExp
and CallExp rules that are equivalent to the following rule computations:

RULE StarExp: Expression ::= Expression ’*’ Expression

COMPUTE

Expression[1].IdemOrigPtg=

PTGIdem_StarExp(Expression[2].IdemPtg,Expression[3].IdemPtg);

Expression[1].IdemPtg=Expression[1].IdemOrigPtg;

END;

RULE CallExp: Expression ::= Identifier ’(’ Arguments ’)’

COMPUTE

Expression[1].IdemOrigPtg=

PTGIdem_CallExp(Arguments.IdemPtg,PTGIdem_Identifier(Identifier));

Expression[1].IdemPtg=Expression[1].IdemOrigPtg;

END;

(For details about RuleFct and TermFct, see Section “Predefined Entities” in LIDO -
Reference Manual.)

Here are several PTG patterns appearing in a textual unparser generated from the
expression language definition that illustrate how the PTG functions are specified:

Idem_StarExp: $1 "*" [Separator] $2

Idem_IdnExp: $1 [Separator]

Idem_CallExp: $2 [Separator] "(" [Separator] $1 ")" [Separator]

Notice how these patterns reconstruct the terminal symbols *, (, and).

Chapter 2: Available Kinds of Unparser 9

The different orders of the indexed insertion points in the patterns Idem_StarExp and
Idem_CallExp are due to the definition of the computation above. Idem_StarExp has
two non-terminal children, which appear in order as the arguments of the generated rule
function. Idem_CallExp, on the other hand, has a non-literal terminal as its first child
and a non-terminal as its second. The non-literal terminal arguments of the generated rule
function follow the non-terminal arguments.

Separator is the function that makes the decision about how to place layout characters
(see Section “Introduce Separators in PTG Output” in Tasks related to generating output).
A call to Separator is inserted into every pattern after each terminal symbol, both literal
and non-literal. This allows a decision to be made about layout characters between each
pair of terminal symbols.

The separator module provides the following output functions, which must be used
instead of the corresponding PTG output functions (see Section “Output Functions” in
PTG: Pattern-based Text Generator):

PTGNode Sep_Out(PTGNode root);

PTGNode Sep_OutFile(char *filename, PTGNode root);

PTGNode Sep_OutFPtr(FILE *fptr, PTGNode root);

The module library contains two modules that implement different strategies for selecting
layout characters:

‘Sp_Separator.fw’
A single space is used as a separator regardless of the context.

‘C_Separator.fw’
Reasonable separator placement rules for C program text: a newline is added
after any of ; { }, no separator is added after any of ([. ++ --, no separator
is added before any of [] , . ; ++ --, and a single space added in all other
cases.

If none of the available modules is satisfactory, then you must create your own. The
simplest approach is to modify one from the library. Here is a sequence of Eli requests that
will extract ‘C_Separator.fw’ as file My_Separator.fw, make My_Separator.fw writable,
and initiate an editor session on it:

-> $elipkg/Output/C_Separator.fw > My_Separator.fw

-> My_Separator.fw !chmod +w

-> My_Separator.fw <

In order to change the decision about what (if any) separator is to be inserted in a given
context, you need to change the function called Sep_Print. Sep_Print (see Section “In-
troduce Separators in PTG Output” in Specification Module Library: Generating Output)
has three arguments: a pointer to the file to which the separator is to be written, a pointer
to the string that immediately precedes the separator, and a pointer to the string that
immediately follows the separator.

Sep_Print must decide whether a separator is appropriate between the two strings
given by its second and third arguments, and if so then what that separator should be. If
a separator is required, Sep_Print must write that separator to the file. Sep_Print must
not modify the strings passed to it.

10 Abstract Syntax Tree Unparsing

2.1.2 Computations for LISTOF productions

A generated textual unparser defines the following computation for a LISTOF production
named ‘r’ with left-hand side ‘X’ and elements ‘Y | Z’ (two attributes are used to simplify
overriding, see Section 3.2 [Changing IdemPtg computations], page 16):

ATTR IdemPtg, IdemOrigPtg: PTGNode;

CLASS SYMBOL IdemReproduce_X COMPUTE

SYNT.IdemOrigPtg=

PTG_r(

CONSTITUENTS (Y.IdemPtg, Z.IdemPtg) SHIELD (Y, Z)

WITH (PTGNode, PTGIdem_2r, PTGIdem_1r, PTGNull));

SYNT.IdemPtg=THIS.IdemOrigPtg;

END;

The class symbol IdemReproduce_X is inherited by the non-terminal symbol X. For example,
in the textual unparser specification generated from the expression language, there is such
a rule with r being ArgList, X being Arguments, and Y being Expression. There is no Z

in that case:

CLASS SYMBOL IdemReproduce_Arguments COMPUTE

SYNT.IdemOrigPtg=

PTG_ArgList(

CONSTITUENTS (Expression.IdemPtg) SHIELD (Expression)

WITH (PTGNode, PTGIdem_2ArgList, PTGIdem_1ArgList, PTGNull));

SYNT.IdemPtg=THIS.IdemOrigPtg;

END;

Arguments inherits IdemReproduce_Arguments in the textual unparser specification gener-
ated from the expression language definition.

The computation for the class symbol invokes three functions specific to the LIDO rule.
Here are the three PTG patterns specifying those functions for the ArgList rule:

Idem_ArgList: $

Idem_2ArgList: $ $

Idem_1ArgList: $

PTG patterns for other LISTOF productions will differ from these only in the pattern names.

2.2 Structural unparser

A structural unparser creates a textual description of the tree in terms of rule names and
non-literal terminal symbols. For example, the sentence ‘a(b,c)’ in the expression language
could be unparsed as the XML file:

<rule_000>

<CallExp>

a

<ArgList>

<IdnExp>b</IdnExp>

<IdnExp>c</IdnExp>

</ArgList>

Chapter 2: Available Kinds of Unparser 11

</CallExp>

</rule_000>

The entire sentence is output as a rule_000 because the LIDO rule defining Axiom was
generated, and was given the name rule_000 by Eli. The single child of this node is a
CallExp with two components, the non-literal terminal symbol ‘a’ and an ArgList made
up of two IdnExp nodes.

Appropriate layout, with meaningful line breaks and indentation, is important for a
human trying to understand the output of a structural unparser. This formatting depends
only on structure, however, not on the content of the output.

Structural unparser generators producing both simple descriptions of trees and descrip-
tions in several standard languages are available. It is also possible for a user to create an
unparser generator that describes the tree in a language of their own choosing.

2.2.1 Computations for plain productions

A generated structural unparser defines the following computation (two attributes are used
to simplify overriding, see Section 3.2 [Changing IdemPtg computations], page 16):

ATTR IdemPtg, IdemOrigPtg: PTGNode;

CLASS SYMBOL IdemReproduce COMPUTE

SYNT.IdemOrigPtg=

RuleFct("PTGIdem_", RHS.IdemPtg, TermFct("PTGIdem_"));

SYNT.IdemPtg = THIS.IdemOrigPtg;

END;

The class symbol IdemReproduce is inherited by every non-terminal symbol appearing on
the left-hand side of a plain production. For example, it is inherited by Expression and
Axiom in the structural unparser specification generated from the expression language def-
inition.

This computation invokes a function specific to the LIDO rule and, if the rule contains
any instances of non-literal terminal symbols, a function specific to each. For example, the
effect of Expression inheriting IdemReproduce is to carry out computations at the StarExp
and CallExp rules that are equivalent to the following rule computations:

RULE StarExp: Expression ::= Expression ’*’ Expression

COMPUTE

Expression[1].IdemOrigPtg=

PTGIdem_StarExp(Expression[2].IdemPtg,Expression[3].IdemPtg);

Expression[1].IdemPtg=Expression[1].IdemOrigPtg;

END;

RULE CallExp: Expression ::= Identifier ’(’ Arguments ’)’

COMPUTE

Expression[1].IdemOrigPtg=

PTGIdem_CallExp(Arguments.IdemPtg,PTGIdem_Identifier(Identifier));

Expression[1].IdemPtg=Expression[1].IdemOrigPtg;

END;

12 Abstract Syntax Tree Unparsing

(For details about RuleFct and TermFct, see Section “Predefined Entities” in LIDO -
Reference Manual.)

Here are several PTG patterns from a structural unparser generated from the expression
language definition that illustrate how those functions are specified:

Idem_StarExp:

"<StarExp>" [BP_BeginBlockI]

[BP_BreakLine] $1 [BP_BreakLine] $2 [BP_BreakLine]

[BP_EndBlockI] "</StarExp>"

Idem_IdnExp:

"<IdnExp>" [BP_BeginBlockI]

[BP_BreakLine] $1 [BP_BreakLine]

[BP_EndBlockI] "</IdnExp>"

Idem_CallExp:

"<CallExp>" [BP_BeginBlockI]

[BP_BreakLine] $2 [BP_BreakLine] $1 [BP_BreakLine]

[BP_EndBlockI] "</CallExp>"

These patterns are the ones generated if the output is to be an XML file (see Section 2.2.3
[Languages describing tree structure], page 13).

The different orders of the indexed insertion points in the patterns Idem_StarExp and
Idem_CallExp are due to the definition of the computation above. Idem_StarExp has
two non-terminal children, which appear in order as the arguments of the generated rule
function. Idem_CallExp, on the other hand, has a non-literal terminal as its first child
and a non-terminal as its second. The non-literal terminal arguments of the generated rule
function follow the non-terminal arguments.

Generated structural unparsers use the block print module (see Section “Typesetting
for Block Structured Output” in Tasks related to generating output) to provide layout.
The generated PTG patterns invoke functions of this module to mark potential line breaks
and the boundaries of logical text blocks. The block print module provides the following
output functions, which must be used instead of the corresponding PTG output functions
(see Section “Output Functions” in PTG: Pattern-based Text Generator):

PTGNode BP_Out(PTGNode root);

PTGNode BP_OutFPtr(FILE *fptr, PTGNode root);

PTGNode BP_OutFile(char *filename, PTGNode root);

Note that the textual representation of the children of every node is considered to be a
logical text block. A line break can occur before each child. The effect of this specification
is to keep the textual representation of a node on a single line if that is possible. Otherwise,
the sequence of children is written one per line, indented from the name of the block’s rule.

2.2.2 Computations for LISTOF productions

A generated structural unparser defines the following computation for a LISTOF production
named ‘r’ with left-hand side ‘X’ and elements ‘Y | Z’ (two attributes are used to simplify
overriding, see Section 3.2 [Changing IdemPtg computations], page 16):

ATTR IdemPtg, IdemOrigPtg: PTGNode;

CLASS SYMBOL IdemReproduce_X COMPUTE

Chapter 2: Available Kinds of Unparser 13

SYNT.IdemOrigPtg=

PTG_r(

CONSTITUENTS (Y.IdemPtg, Z.IdemPtg) SHIELD (Y, Z)

WITH (PTGNode, PTGIdem_2r, PTGIdem_1r, PTGNull));

SYNT.IdemPtg=THIS.IdemOrigPtg;

END;

The symbol IdemReproduce_X is inherited by the non-terminal symbol X. For example, in
the structural unparser specification generated from the expression language, there is such
a rule with r being ArgList, X being Arguments, and Y being Expression. There is no Z

in that case:

CLASS SYMBOL IdemReproduce_Arguments COMPUTE

SYNT.IdemOrigPtg=

PTG_ArgList(

CONSTITUENTS (Expression.IdemPtg) SHIELD (Expression)

WITH (PTGNode, PTGIdem_2ArgList, PTGIdem_1ArgList, PTGNull));

SYNT.IdemPtg=THIS.IdemOrigPtg;

END;

Arguments inherits IdemReproduce_Arguments in the structural unparser specification gen-
erated from the expression language definition.

The computation for the class symbol invokes three functions specific to the LIDO rule.
Here are the three PTG patterns specifying those functions for the ArgList rule:

Idem_ArgList:

"<ArgList>" [BP_BeginBlockI]

[BP_BreakLine] $ [BP_BreakLine]

[BP_EndBlockI] "</ArgList>"

Idem_2ArgList: $ { [BP_BreakLine] } $

Idem_1ArgList: $

PTG patterns for other LISTOF productions will differ from these only in the rule name.

2.2.3 Languages describing tree structure

By default, a structural unparser generator uses a generic functional representation to de-
scribe the tree. Here’s the default representation of the sentence ‘a(b,c)’ in the expression
language:

rule_000(CallExp(a,IdnExp(b),IdnExp(c)))

(Recall that the entire sentence is output as a rule_000 because the LIDO rule defining
Axiom was generated, and was given the name rule_000 by Eli.)

Four other standard representations are available:

XML Generates an unparser that produces an XML representation of the tree, and
a separate DTD file defining the possible structures.

CPP Generates an unparser that produces C++ code to build the tree, and a separate
module defining the set of C++ classes used.

Java Generates an unparser that produces Java code to build the tree, and a separate
package defining the set of Java classes used.

14 Abstract Syntax Tree Unparsing

It is also possible to build structural unparser generators for other application languages
by modifying existing generator specifications. All unparser generators have the same gen-
eral organization: they analyze the tree grammar and produce class symbol computations
and PTG patterns to output any tree defined by that grammar. Much of the analysis is
common, with differences appearing only in the final output of the generated FunnelWeb
file.

The unparser generator specifications available in the library are:

‘$/Unparser/Analysis.fw’
Analysis of the input text that defines the tree grammar. Common attribute
computations supporting a wide range of unparsers.

‘$/Unparser/Idem.fw’
Attribute computations specific to textual unparsers.

‘$/Unparser/Tree.fw’
Attribute computations specific to the generic functional representation.

‘$/Unparser/Xml.fw’
Attribute computations specific to XML files and the associated DTD file.

‘$/Unparser/Cpp.fw’
Attribute computations specific to C++ code and the associated module defini-
tion.

‘$/Unparser/Java.fw’
Attribute computations specific to Java code and the associated package defi-
nition.

Suppose that you wanted to create an unparser generator that would produce Modula-
3 code to build the tree, and a separate interface file defining the tree structure. Be-
cause Modula-3 is quite similar to Java in its structure, you might start by modifying
‘$/Unparser/Java.fw’ from the library. Here is a sequence of Eli requests that will extract
‘Java.fw’ as file Modula-3.fw, make Modula-3.fw writable, and initiate an editor session
on it:

-> $elipkg/Unparser/Java.fw > Modula-3.fw

-> Modula-3.fw !chmod +w

-> Modula-3.fw <

After suitable modification, ‘Modula-3.fw’ could be combined with the library specifi-
cation ‘$/Unparser/Analysis.fw’ to define the new unparser generator. Thus you might
create a file called ‘M3.specs’ with the following content:

Modula-3.fw

$/Unparser/Analysis.fw

The unparser generator could then be derived from ‘M3.specs’ as usual (see Section “exe
– Executable Version of the Processor” in Products and Parameters Reference):

-> M3.specs :exe

Chapter 3: Changing Structure or Representation 15

3 Changing Structure or Representation

The computation of IdemPtg in a given context can be decomposed into two tasks: col-
lecting the IdemPtg attribute values from the children, and combining those values into a
representation of the current context. Methods for attribute value collection depend on the
tree grammar, and are embodied in LIDO computations. Methods for combining values,
on the other hand, depend on the desired form of the unparsed text. They are embodied
in PTG patterns.

There are two ways to override the output defined by the IdemPtg attribute at a given
node:

1. Override the PTG pattern associated with that node

2. Override the computation of the IdemPtg attribute in the associated rule

The first method should be used when the change is simply one of format (adding constant
strings, changing the order of the components, or omitting components). When it is neces-
sary to add significant content to the unparsed representation of a node, then the second
method should be used. Any arbitrary computation yielding an object of type PTGNode can
be carried out, using any information at the processor’s disposal. (Such a solution usually
also requires overriding of the pattern.)

3.1 Overriding PTG patterns

The generated unparser specification contains a PTG pattern for each non-literal terminal
symbol and each LIDO rule in the definition of the tree grammar. Each pattern name is
the name of the construct (non-literal terminal or rule), preceded by a prefix followed by
an underscore. The default prefix is Idem.

All of the non-literal terminal symbols are represented by patterns of the following form
(‘name’ is the non-literal terminal symbol):

Idem_‘name’: [PtgOutId $ int]

This pattern is a single function call insertion (see Section “Function Call Insertion” in PTG:
Pattern-based Text Generator). PtgOutId is a function exported by the PtgCommon mod-
ule (see Section “Commonly used Output patterns for PTG” in Tasks related to generating
output). Its argument is assumed to be a string table index (see Section “Character String
Storage” in Library Reference Manual) and it outputs the indexed string.

This default pattern for a non-literal terminal symbol assumes that the value of that
symbol is, in fact, a string table index. If the internal representation of the symbol was
created by either the token processor mkidn (see Section “Available Processors” in Lexical
Analysis) or the token processor mkstr, this will be the case.

In the expression language specification, mkidn is used to establish the internal repre-
sentation of an Identifier, and mkstr is used to establish the internal representation of
an Integer. Suppose, however, that the internal representation of an Integer was created
by the token processor mkint. In that case, the user would have to provide the following
PTG pattern to override the normal pattern generation.

Idem_Integer: $ int

It is vital to ensure that the PTG pattern associated with a non-literal terminal symbol
is compatible with the token processor creating the internal representation of that symbol.

16 Abstract Syntax Tree Unparsing

The only differences between the infix and postfix representations of an expression tree
are in the literal terminal symbols reconstructed by the textual unparser (parentheses appear
in an infix representation but not in a postfix representation) and in the order in which values
are combined (operators between operands in an infix representation but following them
in a postfix representation). Thus we can override the PTG patterns generated from the
expression language definition to produce a postfix unparser:

Idem_PlusExp: $1 $2 "+" [Separator]

Idem_StarExp: $1 $2 "*" [Separator]

Idem_Parens: $1

Idem_CallExp: $1 $2 [Separator]

Earlier (see Chapter 1 [Using an Unparser], page 3), we used a LIDO computation to
ensure that a textual unparser generated from the expression language definition separated
the arguments of a call with commas. The same effect can be achieved by simply overriding
the PTG pattern that defines the “combine” function of the computation inherited by
Arguments:

Idem_2ArgList: $ { "," [Separator] } $

As usual, an invocation of Separator follows the terminal symbol ,.

In some situations, it is necessary to omit one or more children of a node. This cannot
be done simply by omitting indexed insertion points from the appropriate PTG pattern,
because PTG determines the number of arguments to the generated function from the
set of insertion points. An invocation of the generated function, with one argument per
child, already appears in the computation for the node. Thus any change in the number
of insertion points would result in a mismatch between the number of parameters to the
function and the number of arguments to the call.

A child can be omitted from the unparsed tree by “wrapping” the corresponding indexed
insertion point in the PTG pattern (‘i’ is the integer index):

[IGNORE $‘i’]

IGNORE is a macro defined in the generated FunnelWeb file. It does nothing, so the effect is
that the indexed sub-tree does not appear in the unparsed output.

3.2 Changing IdemPtg computations

The unparser generator implements the computation of the IdemPtg attribute as a class
symbol computation. This class symbol computation can be overridden either by a tree
symbol computation or by a rule computation (see Section “Inheritance of Computations”
in LIDO - Reference Manual).

When overriding the default computation for an IdemPtg value, it is often convenient to
be able to write the new computation in terms of the overridden value. Thus the unparser
generator actually produces two class symbol computations: The IdemOrigPtg attribute of
the class symbol is first computed by applying the appropriate PTG function to the IdemPtg
attributes of the children. Then the IdemPtg attribute of the class symbol is assigned the
value of the IdemOrigPtg attribute of the class symbol.

To see how IdemPtg and IdemOrigPtg could be used when an unparser’s behavior must
be changed, suppose that the Parens rule were omitted from the definition of the expression
language. In that case, the unparser has no information about parentheses present in

Chapter 3: Changing Structure or Representation 17

the original input text. Thus a pretty-printer would fail to output parentheses that were
necessary to override the normal operator precedence and association in certain expressions,
changing the meaning of those expressions.

Here is a simple tree symbol computation to ensure that the unparsed form has the same
meaning as the original tree. It overrides the class symbol computation for IdemPtg that
was produced by the unparser generator by a tree symbol computation:

SYMBOL Expression COMPUTE

SYNT.IdemPtg=PTGParen(THIS.IdemOrigPtg);

END;

PTGParen is defined by the pattern:

Paren: "(" $ ")"

This specification puts parentheses around every expression, which certainly preserves
the meaning but may make the result hard to read. A more readable representation could
be created by parenthesizing only those expressions containing operators:

RULE: Expression ::= Expression Operator Expression

COMPUTE

Expression[1].IdemPtg=PTGParen(Expression[1].IdemOrigPtg);

END;

RULE: Expression ::= Operator Expression

COMPUTE

Expression[1].IdemPtg=PTGParen(Expression[1].IdemOrigPtg);

END;

This illustrates the use of rule computations to override the generated class symbol compu-
tation.

A comma-separated argument list can be produced by overriding the computation of
IdemOrigPtg (or IdemPtg, see Chapter 1 [Using an Unparser], page 3):

RULE: Arguments LISTOF Expression

COMPUTE

Arguments.IdemOrigPtg=

CONSTITUENTS Expression.IdemPtg SHIELD Expression

WITH (PTGNode, PTGArgSep, IDENTICAL, PTGNull);

END;

Chapter 4: Deriving an Unparser 19

4 Deriving an Unparser

Recall the example of the pretty-printer that was defined by the file following type-‘specs’
file (see Chapter 1 [Using an Unparser], page 3):

example.fw

example.fw :idem

Add.fw

The first line is the name of a file defining a processor that builds a tree from a sentence in
the expression language. The second line is a request to derive a textual unparser from the
definition of the expression language. Finally, the third line is the name of a file containing
the computation that outputs the unparsed tree. These three lines constitute the complete
definition of the pretty-printer, which could be derived from this type-‘specs’ file in the
usual way.

Here we are concerned only with the problem of deriving an unparser, exemplified by
the second line above. Such a derivation always yields a FunnelWeb file that defines the
desired unparser. Since the derivation occurs as a component of a type-‘specs’ file, the
derived unparser becomes a component of the processor defined by that type-‘specs’ file.

All of the information needed to construct the unparser must be derivable from its basis
(file ‘example.fw’ in this case). Different derivations are applied to the basis to create
different kinds of unparsers, to control the representation language of the unparsed text,
and to obtain a definition of the output structure.

4.1 Establishing a basis

In the simplest case, the only information needed to derive an unparser is the tree grammar
rules defining the set of trees to be unparsed.

Since the generated unparser will be a component of some processor, all of the rules
defining trees to be unparsed must be valid rules of the tree grammar for that processor.
The easiest way to satisfy this requirement is for the basis of the unparser derivation to
define a complete tree grammar for the processor. This is the situation in our example;
file ‘example.fw’ defines the complete tree grammar for the expression language and there-
fore for the pretty-printer. (See Section 4.3 [Deriving structural unparsers], page 22, for
applications in which unparsers are derived from parts of the tree grammar for a processor.)

Suppose that we were to create a file ‘evaluate.fw’ containing computations that eval-
uate sentences in the expression language. A “desk calculator” could then be defined by a
file ‘calculator.specs’ with the content:

example.fw

evaluate.fw

In this case, ‘calculator.specs’ still defines the complete tree grammar for the expression
language. Thus the following type-‘specs’ file would define a processor that reads sentences
in the expression language, evaluates them, and prints them in a standard format:

calculator.specs

calculator.specs :idem

Add.fw

20 Abstract Syntax Tree Unparsing

The situation is more complex when some PTG patterns must be overridden to obtain
the desired output. Overriding patterns must be specified as part of the basis from which
the unparser is derived, and they will be incorporated into the generated unparser definition.

One way to include overriding PTG patterns in the basis of an unparser derivation is to
make them a part of the overall processor specification. Thus, for example, they could be
included in ‘example.fw’ of the specifications above. Then either of the derivations shown
(the one based on ‘example.fw’ or the one based on ‘calculator.specs’) would produce
an unparser with the specified patterns overridden. It is important to note that the tree
grammar and the PTG patterns are the only things defined by ‘calculator.specs’ (or by
‘example.fw’ in the earlier derivation) that are relevant to deriving an unparser. All other
information is ignored. PTG patterns whose names do not match prefixed rule names from
the tree grammar are also ignored.

It is often a violation of modularity to combine overriding patterns with the overall
processor specification. For example, consider an unparser that outputs a postfix represen-
tation of a sentence in the expression language (see Section 3.1 [Overriding PTG patterns],
page 15). The overriding patterns are specific to this particular processor, and have nothing
to do with the definition of the expression language itself. Including them in ‘example.fw’
would pollute the language specification, tying it to this application.

We can easily avoid this violation of modularity by adding a patterns parameter to
‘example.fw’ to form the basis of the derivation. First, the overriding patterns are defined
in a file named (say) ‘Postfix.ptg’:

Idem_PlusExp: $1 $2 "+" [Separator]

Idem_StarExp: $1 $2 "*" [Separator]

Idem_Parens: $1

Idem_CallExp: $1 $2 [Separator]

This file is then supplied as the value of the patterns parameter (see Section “Parameter-
ization Expressions” in Eli User Interface Reference Manual):

example.fw +patterns=(Postfix.ptg)

The unparser derivation would then be:

example.fw +patterns=(Postfix.ptg) :idem

A complete processor accepting a sentence in the expression language and printing its postfix
equivalent in standard form would then be defined by the following type-‘specs’ file:

example.fw

example.fw +patterns=(Postfix.ptg) :idem

Add.fw

A basis may include any number of file-valued patterns parameters. Only the PTG
patterns defined by these files are relevant to the unparser generation; all other information
is ignored. PTG patterns whose names do not match prefixed rule names from the tree
grammar are also ignored.

Any unparser can be derived with a prefix other than Idem for the type-PTGNode at-
tributes and PTG patterns that it creates. The desired prefix forms part of the basis from
which the unparser is derived. This feature is useful if an application involves more than
one unparser (see Section 4.5 [Deriving multiple unparsers], page 23).

Chapter 4: Deriving an Unparser 21

The desired prefix is supplied as the value of the prefix parameter. For example,
the basis for an expression language unparser computing the attributes TargetPtg and
TargetOrigPtg instead of IdemPtg and IdemOrigPtg would be:

example.fw +prefix=Target

All PTG pattern names in an unparser derived from this basis would begin with Target_

. Thus, if we wished to override the generated patterns in order to produce postfix, the
overriding pattern names in ‘Postfix.ptg’ would have to reflect the new prefix:

Target_PlusExp: $1 $2 "+" [Separator]

Target_StarExp: $1 $2 "*" [Separator]

Target_Parens: $1

Target_CallExp: $1 $2 [Separator]

The basis of such an unparser consists of the the specification file for the tree grammar, mod-
ified by the two parameters (which may be given in any order see Section “Parameterization
Expressions” in Eli User Interface Reference Manual):

example.fw +prefix=Target +patterns=(Postfix.ptg)

In the remainder of this document, ‘Basis’ will be used to denote the basis of an unparser
derivation. As we have seen in this section, ‘Basis’ consists of a single file defining a tree
grammar, possibly parameterized by a set of overriding PTG patterns and/or a prefix to
replace the default Idem.

4.2 Deriving textual unparsers

A textual unparser is constructed by deriving the :idem product:

Basis :idem

The result of this derivation is a FunnelWeb file defining a textual unparser. That
FunnelWeb file contains:

• Named LIDO rules for the tree grammar specified by ‘Basis’.

• PTG patterns either generated from the tree grammar (see Section 2.1 [Textual un-
parser], page 7) or supplied as part of ‘Basis’ (see Section 4.1 [Establishing a basis],
page 19).

• CLASS SYMBOL computations for IdemPtg and IdemOrigPtg (see Section 2.1 [Textual
unparser], page 7). Those computations invoke PTG routines generated from the pat-
terns. The prefix of the attribute and routine names is either Idem or the string specified
via a prefix parameter in ‘Basis’ (see Section 4.1 [Establishing a basis], page 19).

• A definition of the IGNORE macro (see Section 3.1 [Overriding PTG patterns], page 15).

• Invocations of the PtgCommon (see Section “Commonly used Output patterns for PTG”
in Tasks related to generating output) and Separator (see Section “Introduce Separa-
tors in PTG Output” in Tasks related to generating output) library modules.

A PostScript version of the unparser definition can also be derived for documentation pur-
poses:

Basis :idem :fwTex :ps

22 Abstract Syntax Tree Unparsing

4.3 Deriving structural unparsers

A structural unparser is constructed by deriving the :tree product:

Basis :tree

The result of this derivation is a FunnelWeb file defining a structural unparser. That
FunnelWeb file contains:

• Named LIDO rules for the tree grammar specified by ‘Basis’.

• PTG patterns either generated from the tree grammar (see Section 2.1 [Textual un-
parser], page 7) or supplied as part of ‘Basis’ (see Section 4.1 [Establishing a basis],
page 19).

• CLASS SYMBOL computations for IdemPtg and IdemOrigPtg (see Section 2.1 [Textual
unparser], page 7). Those computations invoke PTG routines generated from the pat-
terns. The prefix of the attribute and routine names is either Idem or the string specified
via a prefix parameter in ‘Basis’ (see Section 4.1 [Establishing a basis], page 19).

• A definition of the IGNORE macro (see Section 3.1 [Overriding PTG patterns], page 15).

• Invocations of the PtgCommon (see Section “Commonly used Output patterns for PTG”
in Tasks related to generating output) and BlockPrint (see Section “Typesetting for
Block Structured Output” in Tasks related to generating output) library modules.

A PostScript version of the unparser definition can also be derived for documentation pur-
poses:

Basis :tree :fwTex :ps

A structural unparser produces a description of the tree in some language. Recall that
a generic functional representation is used by default. Any other standard representation
language can be specified by supplying an appropriate value of the lang parameter to the
derivation. For example, the following derives a structural unparser producing a description
of the tree in XML:

Basis +lang=XML :tree

See Section 2.2.3 [Languages describing tree structure], page 13, for a list of the standard
representation languages.

When none of the standard representation languages is appropriate, you can specify
your own unparser generator. This unparser generator can be invoked by supplying its
executable file to the derivation as the value of the lang parameter.

The most common way to specify a new unparser generator is to modify an existing
specification and then use Eli to produce an executable file from that modified specifica-
tion. We have already given an example of this technique (see Section 2.2.3 [Languages
describing tree structure], page 13). In that example, file ‘M3.specs’ defined a generator
producing an unparser that represents a tree by a Modula-3 program. The executable
version of that generator could be obtained in the usual way by deriving the exe product
from ‘M3.specs’ (see Section “exe – Executable Version of the Processor” in Products and
Parameters Reference). Thus the following derivation would create a Modula-3 unparser
for the trees defined by ‘Basis’:

Basis +lang=(M3.specs :exe) :tree

Here the executable file supplied as the value of the lang parameter is the one derived from
the specification of the Modula-3 unparser generator.

Chapter 4: Deriving an Unparser 23

4.4 Obtaining the structure definition

Structural unparser generators producing application-language code also deliver a defini-
tion of the data structure(s) described by that code. For example, an unparser generator
producing tree descriptions in XML also delivers a “document type declaration” (DTD) file
defining a grammar for those descriptions. Here’s the DTD file for the expression language:

<!ENTITY % Axiom "(rule_000)">

<!ENTITY % Expression

"(PlusExp | StarExp | Parens | IdnExp | IntExp | CallExp)">

<!ENTITY % Arguments "(ArgList)">

<!ELEMENT rule_000 (%Expression;)>

<!ELEMENT PlusExp (%Expression;, %Expression;)>

<!ELEMENT StarExp (%Expression;, %Expression;)>

<!ELEMENT Parens (%Expression;)>

<!ELEMENT IdnExp (#PCDATA)>

<!ELEMENT IntExp (#PCDATA)>

<!ELEMENT CallExp (#PCDATA, %Arguments;)>

<!ELEMENT ArgList ((%Expression;)*)>

This definition depends only on the tree grammar, not on any particular tree defined by
that grammar. Thus it is built separately:

Basis +lang=XML :treeStruc

The treeStruc product is a set of files. Both the number of files in that set and their
types depend on the particular structural unparser being generated. For example, the set
is empty for the generic functional representation. The XML unparser generator produces
a single DTD file, and the Java unparser generator produces one type-‘java’ file for every
class in the representation.

You can list the files in the set with the following request:

Basis +lang=XML :treeStruc :ls >

To obtain copies of the definition files, make a copy of the set itself (see Section “Ex-
tracting and Editing Objects” in Eli User Interface Reference Manual):

Basis +lang=XML :treeStruc > Structure

(This request copies the generated files into a sub-directory named ‘Structure’ of the
current directory; the destination name ‘Structure’ could be replaced by any directory
name. The directory must exist before the request is made.)

4.5 Deriving multiple unparsers

Consider a translator that builds a target program tree corresponding to the source program
presented to it. Perhaps we would like to make that translator output a listing of the source
text formatted according to standard rules and also an XML file that defined the target
program tree. This can be done by including two unparsers, one textual and the other
structural.

To make the discussion concrete, let ‘Source_i.specs’ define a processor that reads
a sentence in language ‘i’ and builds a corresponding decorated tree. ‘Translator.fw’
specifies computations over such a source program tree that build a target program tree
according to the structure defined by file ‘Target_j.specs’. File ‘Translator.specs’,

24 Abstract Syntax Tree Unparsing

consisting of the following three lines, would then define a translator that would build a
target program tree corresponding to a sentence in language ‘i’:

Source_i.specs

Target_j.specs

Translate.fw

If the root of the tree grammar defined in ‘Source_i.specs’ is Source, and the root of the
tree grammar defined in ‘Target_j.specs’ is Target, then ‘Translate.fw’ might contain
the following LIDO computation:

RULE Axiom: Root ::= Source $ Target

COMPUTE

Target.GENTREE=Source.Code;

END;

This computation takes the target program tree that has been built as the value of attribute
Source.Code, and makes it the second child of the root node (see Section “Computed
Subtrees” in LIDO - Reference Manual).

Given ‘Translator.specs’, one way to define a processor producing a listing of the
source text formatted according to standard rules and also an XML file defining the target
program tree would be to write the following type-‘specs’ file:

Translator.specs

Translator.specs :idem

Translator.specs +prefix=Target +lang=XML :tree

Add.fw

The first line of this file defines the translator itself, and the second line defines a textual
unparser computing IdemPtg attributes. A structural unparser computing TargetPtg at-
tributes that hold XML representations of their nodes is defined by the third line. Two of
the additional computations defined by the last line of this file might be:

SYMBOL Source COMPUTE Sep_Out (THIS.IdemPtg); END;

SYMBOL Target COMPUTE BP_OutFile("xml",THIS.TargetPtg); END;

These computations will write the pretty-printed source program to the standard output,
and the XML representation of the target program tree to file ‘xml’.

4.6 Deriving unparsers from sub-grammars

Suppose that the tree grammars defined by ‘Source_i.specs’ and ‘Target_j.specs’ in the
example of the previous section are disjoint. In that case, the processor defined there will
compute unnecessary IdemPtg attributes for target tree nodes and unnecessary TargetPtg

attributes for source tree nodes. These unnecessary computations can be avoided by simply
changing the type-‘specs’ file to derive each unparser from the tree grammar to which it
applies:

Translator.specs

Source_i.specs :idem

Target_j.specs +prefix=Target +lang=XML :tree

Add.fw

Note that no other changes are needed in any of the files.

Chapter 4: Deriving an Unparser 25

Each of the two tree grammars on which the unparsers are based defines a complete,
rooted sub-tree of the complete tree. Moreover, because the tree grammar defined by
‘Target_j.specs’ describes a tree created by attribution, each of its rules has been given
an explicit name (see Section “Tree Construction Functions” in LIDO - Reference Manual).

The fact that no more than one of the tree grammars contains unnamed rules is crucial
to the success of the complete processor derivation. Recall that an unparser definition
contains the definition of the tree grammar on which it is based, and every rule in that tree
grammar is named. If the names were not explicit in the unparser’s basis, the names in the
unparser definition will have been created as part of the unparser generation. The same
name creation process is applied during every unparser generation, and therefore if two
unparsers generated from disjoint tree grammars with unnamed rules are combined there
will be name clashes.

Index 27

Index

$
$ symbol . 16

+
+lang . 22
+patterns . 20
+prefix . 20

A
‘Add.fw’ . 4
additional information . 4
‘Analysis.fw’ . 14
application language, selecting 22
application languages, CPP 13
application languages, Java 13
application languages, other 14
application languages, XML 13
argument separator . 3, 16, 17
attribute, IdemOrigPtg . 16
attributes . 8, 11, 12

B
basis . 19
block print module . 12
BP_BeginBlockI . 12
BP_BreakLine . 12
BP_EndBlockI . 12
BP_Out . 12
BP_OutFile . 24

C
C_Separator . 4
‘C_Separator.fw’ . 9
chain rule, omitted . 16
child, omitting in the unparsed output 16
class symbol computation . 16
compatibility with token processor 15
computation, class symbol 16
computation, IdemPtg . 15, 16
computation, rule . 16, 17
computation, tree symbol 16, 17
computations for LISTOF productions 10, 12
computations for plain productions 8, 11
computed sub-tree . 23
constructing a separator module 9
CPP . 13
‘Cpp.fw’ . 14

D
derivation, structural unparser 22
derivation, structure definition 23
derivation, textual unparser 21
derivation, unparser . 19
DTD file . 14, 23

E
‘example.fw’ . 3

F
formatting strategy . 4

I
idem . 21
‘Idem.fw’ . 14
IdemOrigPtg attribute . 16
IdemPtg . 8, 11, 12
IdemPtg, computation . 15, 16
IdemPtg, overriding . 16
IdemReproduce . 8, 11
IdemReproduce_X . 10, 12
IGNORE macro . 16
indexed insertion points, order of 12

J
Java . 13
‘Java.fw’ . 14

K
kinds of unparser . 7

L
layout . 4, 12
LISTOF productions . 7
LISTOF productions, computations 10, 12
literal terminals, reconstruction 7, 8

M
‘M3.specs’ . 14, 22
mkidn . 15
mkint . 15
module, block print . 12
module, separator . 9

28 Abstract Syntax Tree Unparsing

N
non-literal terminal symbols 15

O
omitted chain rule . 16
omitted child . 16
operator precedence, overriding 7
order of indexed insertion points 12
overriding operator precedence 7
overriding PTG patterns . 15

P
package definition . 14
plain productions, computations 8, 11
precedence levels . 3
pretty-printer . 3
productions, LISTOF . 7
PTG patterns, overriding . 15
PtgOutId . 15

R
reconstruction of literal terminals 7, 8
rule computation . 16, 17

S
Sep_Out . 4, 9, 24
Sep_Print . 9
Separator . 16
Separator function call . 5, 9
separator module, constructing 9
separator, argument 3, 16, 17

‘Sp_Separator.fw’ . 9
string table index . 15
structural unparser . 10
structural unparser, deriving 22
structural unparser, structure definition

. 23
sub-tree, computed . 23

T
terminal symbol, non-literal 15
terminal symbol, overriding 15
textual unparser . 7
textual unparser, deriving 21
token processor compatibility 15
tree . 22
tree grammar, partial . 24
tree symbol computation 16, 17
‘Tree.fw’ . 14

U
unparser derivation . 19
unparser generator, available specifications

. 14
unparser generator, specifying 22
unparser, kinds . 7
unparser, structural . 10
unparser, textual . 7
unparsers, combining . 23

X
XML . 13
‘Xml.fw’ . 14

	Using an Unparser
	Available Kinds of Unparser
	Textual unparser
	Computations for plain productions
	Computations for LISTOF productions

	Structural unparser
	Computations for plain productions
	Computations for LISTOF productions
	Languages describing tree structure

	Changing Structure or Representation
	Overriding PTG patterns
	Changing IdemPtg computations

	Deriving an Unparser
	Establishing a basis
	Deriving textual unparsers
	Deriving structural unparsers
	Obtaining the structure definition
	Deriving multiple unparsers
	Deriving unparsers from sub-grammars

	Index

