
LIDO - Computations in Trees

$Revision: 4.17 $

Uwe Kastens

Compiler and Programming Language Group
University of Paderborn, FB 17

33102 Paderborn, FRG

Copyright, 1997 University of Paderborn

i

Table of Contents

1 Tree Structure . 3

2 Dependent Computations . 5
2.1 Value Dependencies . 5
2.2 State Dependencies . 6
2.3 Accumulating Computations . 8

3 Remote Dependencies in Trees 11
3.1 Access to a Subtree Root . 11
3.2 Access to Contexts within a Subtree . 12
3.3 Left-to-Right Dependencies . 14

4 Symbol Computations . 17
4.1 Basic Symbol Computations . 17
4.2 Reuse of Symbol Computations . 19

5 Early Computations During Tree Construction
. 21

6 Interactions within Eli . 23
6.1 Supplying Tree Computation Specifications to Eli 23
6.2 Tree Construction . 23
6.3 Implementing Tree Computations . 24
6.4 Specification Errors . 24

Index . 27

1

Language processors generated by Eli consist of a structuring phase and a transformation
phase. The first reads the input, checks whether its structure fulfills the language require-
ments and builds a tree representing that structure. The transformation phase performs
any kind of computations on such trees necessary for analysis of the input structure and
for computing some output as required by the language processor tasks. Both phases are
generated from user supplied specifications.

This document introduces the techniques used to specify the transformation phase. Its
central concepts are computations in trees. The subsequent sections introduce the most
important techniques and their notation in the specification language LIDO on the base of
very simple examples.

Chapter 1 [Tree], page 3 to Chapter 5 [Bottomup], page 21 should be read in that order
to get a complete overview. It should be pointed out, that this document is not intended
to define the language LIDO. The LIDO Reference Manual should be consulted for specific
questions on language constructs. It also describes facilities which increase the expressive
power of LIDO far beyond the level introduced here. See Section “top” in LIDO – Reference
Manual. Many common subtasks of the transformation phase need not be solved by writing
LIDO specifications from scratch. Reusable solutions can be obtained from Eli’s module
library. See Section “top” in ModLib - Specification Module Library .

Chapter 6 [Specification], page 23 of this document describes how to use LIDO specifications
within Eli, how they interact with other specifications and how to get more information when
errors are reported on the specification. The first part (Section 6.1 [LIGA Files], page 23 to
Section 6.3 [Implementing], page 24) should be read while examples are practically exercised.
Section 6.4 [Errors], page 24 should be consulted initially when errors occur that can not
be immediately traced and corrected.

Chapter 1: Tree Structure 3

1 Tree Structure

The central data structure of a specified language processor is a tree. It usually represents
the abstract structure of the particular input text and is built by actions of the scanner and
parser. The trees a language processor operates on are specified by a context-free grammar,
the tree grammar. It is part of the specification in LIDO. Figure 1 shows a tree grammar
for simple expressions that consist of numbers and binary operators.

RULE: Root ::= Expr END;

RULE: Expr ::= Expr Opr Expr END;

RULE: Expr ::= Number END;

RULE: Opr ::= ’+’ END;

RULE: Opr ::= ’*’ END;

Figure 1: Expression Tree Grammar

Root, Expr, and Opr are the nonterminals of this context-free grammar. Number, ’+’ and
’*’ are its terminals. Trees are built such that their nodes represent occurrences of non-
terminals of the tree grammar. Terminals are not represented in the tree. Each production
specifies that the symbol on the left-hand side has a sequence of subtrees according to the
nonterminals on the right-hand side. In our example the first production specifies one, the
second three, and the others no subtree. Expr and Opr have two alternative productions
each.

Figure 2 shows an example for a tree specified by this grammar, which may represent the
input expression 1 + 2 * 3. (The terminals in the bottom line do not belong to the tree.)

Root

|

|

Expr

|

-----------|-----------

| | |

Expr Opr Expr

| | |

- - ------------

| | |

Expr Opr Expr

| | |

- - -

Number + Number * Number

Figure 2: An Expression Tree

A tree node together with its immediate descendent nodes represents the application of a
production, called a rule context. In Figure 2, there are for example two instances of the
rule context for the second rule of the grammar. The two productions for Opr describe
different rule contexts, although both have no subtrees.

If we consider a node of a tree, then it connects two adjacent contexts, an upper context
and a lower context. For example the upper context of an Expr node may be an application

4 LIDO – Computations in Trees

of the first or the second rule, and the lower context may be an application of the second
or third rule. Rule contexts and adjacent contexts are the central concepts for association
of computation, for dependencies between computations, and for the tree walk executing
them.

Two kinds of terminals are distinguished: Literal terminals like ’+’ and ’*’ do not carry any
information. They are only used to identify the production and to relate it to the concrete
grammar. Named terminals like Number may carry some information usually computed
from the input token by the scanner, e. g. the value of the number. That information may
be used in computations of the rule context where the terminal occurs.

When designing a tree grammar one often needs to specify that a certain kind of nodes
has an arbitrary number of subtrees. For example a block may consist of a sequence of
definitions and statements. That can be expressed using LISTOF productions, like

RULE: BLOCK ::= ’{’ Sequence ’}’ END;

RULE: Sequence LISTOF Definition | statement END;

Here, a Sequence node is specified to have an arbitrary number (including zero) of subtrees
rooted by nodes of type Definition or Statement.

The LISTOF productions abstract from the fine-grained tree structure used to compose the
elements of the sequence. The root context and the elements contexts of the sequence
are not adjacent. Hence, when we associate computations to these contexts, they can not
refer directly to each other; techniques of remote access have to be used instead (see See
Chapter 3 [Remote], page 11).

The above LISTOF production can be considered as an abbreviation of the following set of
tree grammar productions.

RULE: Sequence ::= S END;

RULE: S :: = S Definiton END;

RULE: S :: = S Statement END;

RULE: S :: = END;

This is also one of the forms of productions that could be specified in the concrete grammar
for the paser. Several other forms, for example right recursive productions, would match to
the LISTOF rule as well.

Chapter 2: Dependent Computations 5

2 Dependent Computations

Language processing requires certain computations to be executed for each instance of a lan-
guage construct. Hence the specification associates computations to rule contexts. Usually
a computation depends on values or effects yielded by other computations. Such dependen-
cies are specified by attributes associated to grammar symbols. It should be emphasized
that only the necessary dependencies are specified, rather than a complete execution order.
A tree walking algorithm that executes the computations in a suitable order is generated
automatically.

In this section we introduce the basic concepts and notations for specification of dependent
computations in trees. The examples refer to the tree grammar of the previous section. It
will be shown how expression evaluation and a simple transformation is specified.

2.1 Value Dependencies

Let us first describe computations that evaluate any given expression tree and print the
result:

ATTR value: int;

RULE: Root ::= Expr COMPUTE

printf ("value is %d\n", Expr.value);

END;

The above RULE associates the printf computation to the rule context. The notation
repeats the rule as shown in the tree grammar and adds any set of computations between
COMPUTE and END. Computations are denoted like calls of C functions. The arguments
are C literals, again function calls, or attributes. (User defined functions are implemented
in specifications files separate from the .lido specification, See Chapter 6 [Specification],
page 23.)

The above computation uses the value attribute of the Expr subtree of this context. In
general any attribute of any symbol that occurs in the rule context may be used in a
computation of that context.

In this case the value attribute is the integral value computed for the expression. The ATTR
construct states that its type is int. In fact it specifies that type for any attribute named
value that is just used with a symbol. Any C type name may be specified. Such a type
association is valid throughout the whole specification. It can be overridden by attribute
properties specified in SYMBOL constructs.

The above computation depends on a computation that yields Expr.value. Since the
internal structure of the Expr subtree determines how its value is to be computed, those
computations are associated with the two lower adjacent contexts that have Expr on the
left-hand side of their production, as shown in the computations of Figure 3.

TERM Number: int;

RULE: Expr ::= Number COMPUTE

Expr.value = Number;

END;

6 LIDO – Computations in Trees

RULE: Expr ::= Expr Opr Expr COMPUTE

Expr[1].value = Opr.value;

Opr.left = Expr[2].value;

Opr.right = Expr[3].value;

END;

SYMBOL Opr: left, right: int;

RULE: Opr ::= ’+’ COMPUTE

Opr.value = ADD(Opr.left, Opr.right);

END;

RULE: Opr ::= ’*’ COMPUTE

Opr.value = MUL(Opr.left, Opr.right);

END;

Figure 3: Computation of Expression Values

The TERM construct states that the terminal symbol Number carries a value of type int to
be used in computations like that of the first rule.

Computations that yield a value to be used in other computations are denoted like an
assignment to an attribute. But it must be emphasized that they have to obey the single
assignment rule: There must be exactly one computation for each attribute instance in
every tree.

The values of binary expressions are computed in each of the two Opr contexts and passed to
the root of the binary subtree. The ADD and MUL operations are predefined macros in LIDO.
Opr has three attributes, the values of the left and right operands and the result of the
operation. The attributes left and right are associated to Opr by the SYMBOL construct
which states their type to be int. As only the Opr symbol has attributes of these names
thy are not introduced by an ATTR construct. The attribute value is associated to Opr by
just using it in a computation. Its type is specified by the ATTR construct explained above.

The three attributes belong to two conceptually different classes: Opr.value is computed in
the lower context, as Expr.value (called synthesized or SYNT attribute), whereas Opr.left
and Opr.right are computed in the upper context (called inherited or INH attributes). Any
attribute must belong to either of the classes in order to obey the single assignment rule.

There are three (in this case trivial) computations specified in the context for binary expres-
sions. It should be pointed out that their textual order is irrelevant: The execution order
is determined by their dependencies. In this case the computation of Expr[1].value will
be executed last. The attribute notation requires indexing of symbol names, if a symbol
occurs more than once in a production, like Expr. The indices enumerate the occurrences
of a symbol in the production from left to right beginning with 1.

2.2 State Dependencies

Our second example specifies how to print expressions in postfix notation, e. g. 1 2 3 * +

for the given expression 1 + 2 * 3. It demonstrates how computations that yield an effect
rather than a value are specified to depend on each other.

Chapter 2: Dependent Computations 7

We may start from a specification that just outputs each number and operator, given in
Figure 4. It causes each instance of numbers and operators in the tree being printed. Since
no dependencies are specified yet, they may occur in arbitrary order in the output.

RULE: Root ::= Expr COMPUTE

printf ("\n");

END;

RULE: Expr ::= Number COMPUTE

printf ("%d " , Number)

END;

RULE: Opr ::= ’+’ COMPUTE

printf ("+ ");

END;

RULE: Opr ::= ’*’ COMPUTE

printf ("* ");

END;

Figure 4: Output of Expression Components

In order to achieve the desired effect we have to specify that a computation is not executed
before certain preconditions hold which are established by a postcondition of some other
computations. We specify such conditions by attributes that do not have values, but de-
scribe a computational state. In Figure 5 we associate attributes print and printed to
Expr and Opr. Expr.print describes the state where the output is produced so far such
that the text of the Expr subtree can be appended. Expr.printed describes the state where
the text of this subtree is appended (correspondingly for Opr.print and Opr.printed).

RULE: Root ::= Expr COMPUTE

Expr.print = "yes";

printf ("\n") <- Expr.printed;

END;

RULE: Expr ::= Number COMPUTE

Expr.printed = printf ("%d ", Number) <- Expr.print;

END;

RULE: Opr ::= ’+’ COMPUTE

Opr.printed = printf ("+ ") <- Opr.print;

END;

RULE: Opr ::= ’*’ COMPUTE

Opr.printed = printf ("* ") <- Opr.print;

END;

RULE: Expr ::= Expr Opr Expr COMPUTE

Expr[2].print = Expr[1].print;

Expr[3].print = Expr[2].printed;

8 LIDO – Computations in Trees

Opr.print = Expr[3].printed;

Expr[1].printed = Opr.printed;

END;

Figure 5: Dependencies for Producing Postfix Expressions

The general form of dependent computations as used in Figure 5 is

postcondition = computation <- precondition

If the postcondition is not used elsewhere, it (and the =) is omitted. If the postcondition
is directly established by another condition, the computation and the <- are omitted. If
a condition initially holds it is denoted by some literal, like "yes" in the Root context. A
computation may depend on several preconditions:

<- (X.a, Y.b).

Computations may also depend on the computation of value carrying attributes without
using their value, or computations may yield a value and also depend on some preconditions.

State attributes which do not carry a value have the type VOID. They need not be introduced
by a SYMBOL or an ATTR construct. They may be just used in a computation. But the same
consistency and completeness requirements apply for them as for value carrying attributes.

It should be noted that the specifications of several tasks, e. g. computing expression
values and producing postfix output may be combined in one specification for a language
processor that solves all of them. It is a good style to keep the specifications of different
tasks separate, rather than to merge the computations for each single context. You may
specify several sets of computations at different places. They are accumulated for each rule
context. LIDO specifications may reside in any number of .lido files or output fragments
of .fw files. Hence, modular decomposition and combining related specifications of different
types is encouraged.

See Section 3.3 [Chain], page 14, for an example of expressing the above example using
left-to-right depencencies.

2.3 Accumulating Computations

There are situations where a VOID attribute, say Program.AnalysisDone, represents a com-
putational state which is reached when several computations are executed, which conceptu-
ally belong to different sections of the LIDO text. Instead of moving all these computations
to the only place where Program.AnalysisDone is computed, several accumulating compu-
tations may stay in their conceptual context and contribute dependences to that attribute.

A computation is marked to be accumulating by the += token. The following example
demonstrates the above mentioned use of accumulating computations:

RULE: Program ::= Statements COMPUTE

Program.AnalysisDone += DoThis ();

END;

....

RULE: Program ::= Statements COMPUTE

Program.AnalysisDone += DoThat () <- Statements.checked;

END;

Two accumulating computations contribute both to the attribute Program.AnalysisDone,
such that it represents the state when the calls DoThis () and DoThat () are executed

Chapter 2: Dependent Computations 9

after the pre-condition Statements.checked has been reached. The two accumulating
computations above have the same effect as if there was a single computation, as in

RULE: Program ::= Statements COMPUTE

Program.AnalysisDone = ORDER (DoThis (), DoThat ())

<- Statements.checked;

END;

The order in which DoThis () and DoThat () are executed is arbitrarily decided by the
Liga system.

Accumulating computations may be formulated in rule context or in the context of TREE
or CLASS symbols. Rule attributes may also be computed by accumulating computations.

Only VOID attributes may have accumulating computations. If an attribute has an accu-
mulating computation, it is called an accumulating attribute, and all its computations must
be accumulating. Attributes are not explicitly defined to be accumulating. If an attribute
is not defined explicitly, it has the type VOID by default. Hence, accumulating attributes
need not be defined explicitly, at all.

The set of accumulating computations of an attribute is combined into a single computation,
containing all dependences and function calls of the contributing accumulating computa-
tions, as shown above.

Accumulating computations may be inherited from CLASS symbols. In contrast to non-
accumulating computations, there is no hiding for accumulating computations: All accumu-
lating computations that lie on an inheritance path to an accumulating attribute in a rule
context are combined. For example, add the following specifications to the above example:

SYMBOL Program INHERITS AddOn COMPUTE

SYNT. AnalysisDone += AllWaysDo ();

END;

CLASS SYMBOL AddOn COMPUTE

SYNT. AnalysisDone += AndAlsoDo ();

END;

Then all four computations for Program.AnalysisDone (two in the RULE context above,
one in the TREE symbol context Program, and one inherited from the CLASS symbol
AddOn) will be combined into one. It characterizes the state after execution of the four
function calls and the computation of Statements.checked.

Another typical use of accumulating attributes occurs in the context of specification mod-
ules: Assume that in a library of specification modules or in a modularly decomposed LIDO
specification a computational role like the following is provided:

CLASS SYMBOL FindPath COMPUTE

SYNT.Path = SearchPath (SYNT.Graph) <- SYNT.UserDependence;

SYNT.UserDependence += "yes";

END;

The provider of this computational role allows the user to add a dependence as a user defined
pre-condition for the execution of the call of SearchPath, if necessary. It is demonstrated
in the following use of the role:

SYMBOL EdgeList INHERITS FindPath COMPUTE

SYNT.UserDependence += SYNT.GotAllEdges;

END;

Chapter 3: Remote Dependencies in Trees 11

3 Remote Dependencies in Trees

In the previous section we considered dependencies between computations within one rule
context and computations that are associated to pairs of adjacent contexts. It is often
necessary to specify that a precondition of a computation is established rather far away in
the tree, e. g. a value computed in the root context is used in several computations down
in the tree. Instead of propagating it explicitly through all intermediate contexts it may be
accessed directly by notations for remote dependencies.

In the following we introduce three constructs for remote dependency specification:

• access to a subtree root from contexts within the subtree (INCLUDING construct),

• access to contexts within a subtree from its root context (CONSTITUENTS construct),

• computations at certain subtree contexts that depend in depth-first left-to-right order
on each other (CHAIN construct).

These constructs can be used for value dependencies as well as for state dependencies. Since
these constructs avoid specifications in the contexts between the remote computations, they
abstract from the particular tree structure in between: It may be designed according to other
aspects or be altered without invalidating those remote dependencies.

3.1 Access to a Subtree Root

Assume that we have a language where Blocks are arbitrarily nested. We want to compute
the nesting depth of each Block, and mark each Definition with the nesting depth of the
smallest enclosing Block.

ATTR depth: int;

RULE: Root ::= Block COMPUTE

Block.depth = 0;

END;

RULE: Block ::= ’{’ Sequence ’}’ END;

RULE: Sequence ::= Sequence Statement END;

RULE: Sequence ::= Sequence Definition END;

RULE: Sequence ::= END;

RULE: Statement ::= Block COMPUTE

Block.depth = ADD (INCLUDING Block.depth, 1);

END;

RULE: Statement ::= Usage END;

RULE: Usage ::= ’use’ Ident END;

TERM Ident: int;

RULE: Definition ::= ‘define’ Ident COMPUTE

printf ("%s defined on depth %d\n",

StringTable (Ident), INCLUDING Block.depth);

12 LIDO – Computations in Trees

END;

Figure 6: Nesting Depth of Blocks

The specification of Figure 6 solves the stated problem by remote dependencies (INCLUDING).
The tree contexts between Block and Statement or Definition do not need any compu-
tations. They are only mentioned here to show a complete example. The expression

INCLUDING Block.depth

used in two computations accesses the depth value of the next enclosing Block.

In general, alternative subtree root symbols may be specified, e. g.

INCLUDING (Block.depth, Procedure.depth, Module.depth)

Then the root of the smallest enclosing subtree is accessed which represents one of the given
symbols. The tree grammar must guarantee that such a subtree root can always be found.
Such an alternative has to be used especially in an INCLUDING that refers to a recursive
construct like Block.

INCLUDING constructs may also be used as preconditions in <- constructs, and they may
refer to state attributes.

3.2 Access to Contexts within a Subtree

Assume that we have a language for sequences of definitions and uses of names in arbitrary
order. We want to produce an output text for each definition and each use, such that
definition texts precede the use texts in the output. No specific order is required within the
two text blocks.

RULE: Block ::= ’{’ Sequence ’}’ COMPUTE

Block.DefDone = CONSTITUENTS Definition.DefDone;

END;

RULE: Definition ::= ’Define’ Ident COMPUTE

Definition.DefDone =

printf ("%s defined in line %d\n",

StringTable(Ident), LINE);

END;

RULE: Usage ::= ’use’ Ident COMPUTE

printf ("%s used in line %d\n",

StringTable(Ident), LINE),

<- INCLUDING BLOCK.DefDone;

END;

Figure 7: Sequencing Classes of Computations in a Subtree

The solution of the problem given in Figure 7 uses a state attribute Block.DefDone. It
describes the state where all definition texts are printed. Hence in that state the condition
Definition.DefDone must hold at each Definition in the subtree below the Block con-
text, as stated by the CONSTITUENTS construct. The state Block.DefDone in turn is the
precondition for the print computation in the Usage context. Such a pair of CONSTITUENTS
and INCLUDING uses is a common depedency pattern.

The following example demonstrates the remote access to values within a subtree. We simply
want to compute the number of Usage constructs in a program of the above language.

Chapter 3: Remote Dependencies in Trees 13

ATTR Count: int;

RULE: Block ::= ’{’ Sequence ’}’ COMPUTE

printf ("%d uses occurred\n",

CONSTITUENTS Usage.Count

WITH (int, ADD, IDENTICAL, ZERO));

END;

RULE: Usage ::= ’use’ Ident COMPUTE

Usage.Count = 1;

END;

Figure 8: Adding Values of Subtree Components

The CONSTITUENTS construct in Figure 8 combines the values Usage.Count of each Usage

node within the Block subtree. The WITH clause specifies how the values are combined, in
this case they are added yielding an int-value.

The WITH clause is a scheme to combine an arbitrary number of values by a binary function.
The general form is

WITH (t, combine, single, none)

where single is a function that yields a value of type t applied to an attribute accessed by
the CONSTITUENTS. The function combine yields a t value applied to two t values. none

is a constant function yielding a t value applied to no argument. (It is applied at subtrees
that do not contain the accessed symbol, although the tree grammar would allow them to
contain it). Typical examples for WITH clauses are given in Figure 9.

WITH (int, ADD, IDENTICAL, ZERO)

WITH (int, Maximum, IDENTICAL, ZERO)

WITH (int, OR, IDENTICAL, ZERO)

WITH (int, AND, IDENTICAL, ONE)

WITH (listtype, Append, SingleList, NullList)

Figure 9: Typical WITH Clauses

The applications of the combine functions obey the left-to-right order of the tree nodes
where their arguments stem from. The combine function should be associative, the none

function should not affect the resulting value. The calls of the three functions may occur in
any suitable order; hence one should not rely upon side-effects. Suitable implementations
of the functions and the type must be made available for the evaluator. (see Section 6.3
[Implementing], page 24)

We must be aware that in our example the CONSTITUENTS is applied in a recursive tree
structure, i. e. blocks are nested in our language. In fact the above specification causes
that Usage constructs in inner blocks do not contribute to the CONSTITUENTS in outer Block
context: Inner Block subtrees are shielded from it. We better make that explicit by

CONSTITUENTS Usage.Count SHIELD Block WITH (...)

In general we may shield any class of subtrees from the CONSTITUENTS-access, e. g. by

SHIELD (Block, Procedure, Module) ...

If no subtree should be shielded an empty SHIELD clause is used:

... SHIELD () ...

14 LIDO – Computations in Trees

In this case our example would count the Usage constructs of all inner blocks too.

In general several attributes may be specified for being accessed by a CONSTITUENTS:

CONSTITUENTS (X.a, Y.b)

3.3 Left-to-Right Dependencies

As an example for a simple left-to-right dependent computation we rewrite the translation
of expressions into postfix form of Figure 4.

In Figure 10 the CHAIN print specifies a sequence of computations that depends on each
other in left-to-right depth-first order throughout the tree. It takes over the role of the pair
of state attributes print and printed in Figure 5. Hence the CHAIN is introduced with
type VOID.

CHAIN print: VOID;

RULE: Root ::= Expr COMPUTE

CHAINSTART HEAD.print = "yes";

printf ("\n") <- TAIL.print;

END;

RULE: Expr ::= Number COMPUTE

Expr.print = printf ("%d ", Number. Sym)

<- Expr.print;

END;

RULE: Opr ::= ’+’ COMPUTE

Opr.post = printf ("+") <- Opr.pre;

END;

RULE: Expr ::= Expr Opr Expr COMPUTE

Opr.pre = Expr[3].print;

Expr[1].print = Opr.post;

END;

Figure 10: CHAIN for Producing Postfix Expressions

The CHAIN computations are initiated in the Root context; HEAD.print refers to the CHAIN
at the leftmost subtree, Expr in this case. TAIL.print refers to the end of the CHAIN at the
rightmost subtree, again Expr. It is the precondition for printing the final newline.

In the second context the printf computation is specified to lie on the CHAIN by stating
Expr.print to be a precondition (incoming CHAIN) as well as to be a postcondition (outgoing
CHAIN).

The Opr context together with the binary operation context specifies that operators are
not printed in CHAIN order, but are appended after the right operand is printed. For that
purpose two state attributes Opr.pre and Opr.post are used, as in Figure 5.

If it is necessary to locally deviate from CHAIN order, like here in case of the binary operation
context, it has to be made sure, that the chain is not cut into separate pieces which are not
linked by dependencies: If by some reason we would add another computation to the Opr

context of our example, e. g.

Chapter 3: Remote Dependencies in Trees 15

Opr.print = printf("Operator encountered\n")

<- Opr.print;

it looks like being integrated into the print CHAIN. But the two computations of the binary
Expression context shortcut the CHAIN across the Opr symbol. Hence, this computation
may be executed later than intended.

The above example specifies a single CHAIN of computations through the tree. In general
there may be several instances of a CHAIN in several subtrees, which may be nested, too. For
example, we may allocate variable definitions to storage addresses relative to their smallest
enclosing Block, as shown in Figure 11. Here the CHAIN computations propagate values in
depth-first left-to-right order.

CHAIN RelAdr: int;

RULE: Block ::= ’{’ Sequence ’}’ COMPUTE

CHAINSTART HEAD.RelAdr = 0;

END;

RULE: Definition ::= ’define’ Ident COMPUTE

Definition.RelAdr = ADD (Definition.RelAdr, VariableSize);

END;

Figure 11: Computing Addresses of Variables

An individual CHAIN is started for each Block. In the computation of the Definition context
the two occurrences of Definition.RelAdr refer to different values on the CHAIN: The access
in the ADD computation is the incoming current CHAIN value (the address of this variable),
the result left to the = symbol denotes the outgoing next CHAIN value.

Chapter 4: Symbol Computations 17

4 Symbol Computations

In this section we introduce constructs that associate computations to tree grammar symbols
rather than to rule contexts. They can be used for computations which are conceptually
connected with symbols, i. e. they have to be executed once for each such symbol node and
they are not distinguished for the contexts in which the symbol occurs.

The use of symbol computations makes specifications even more independent of the partic-
ular tree grammar, and hence reduces the chance to be invalidated by grammar changes.
Well designed symbol computations may be reused at different places in one specification,
and even in specifications of different language processors.

In the following we demonstrate the use of symbol computations, and introduce a construct
for their reuse.

4.1 Basic Symbol Computations

Consider the expression grammar given in the example of Section 2.1 [Value], page 5. For
the purpose of this example assume that we want to trace the computation of expression
values, and print Expr.value for each Expr node. We could associate that computation to
both lower Expr context. But this computation does not refer to those particular contexts,
it only depends on one Expr attribute. Hence we better associate it to the Expr symbol:

SYMBOL Expr COMPUTE

printf ("expression value %d in line %d\n", THIS.value, LINE);

END;

Symbol computations may use attributes of the symbol by the notation
THIS.AttributeName.

The next example in Figure 12 shows how attributes are computed by symbol computations.
It rewrites the usage count example of Figure 8. Both of its computations are in fact
independent of the particular rule context.

ATTR Count: int;

SYMBOL Usage COMPUTE

SYNT.Count = 1;

END;

SYMBOL Block COMPUTE

printf ("%d uses occurred\n",

CONSTITUENTS Usage.Count SHIELD Block

WITH (int, ADD, IDENTICAL, ZERO));

END;

Figure 12: Symbol Computations for Usage Count

An attribute that is defined by a symbol computation has to be classified SYNT or INH, like
SYNT.Count above (instead of THIS.Count if the attribute were used in the computation).
It determines whether the computation is intended for the lower SYNT or the upper INH

contexts of the symbol.

18 LIDO – Computations in Trees

The symbol computation of Block above shows that CONSTITUENTS constructs may be used
in symbol computations as well as in rule contexts. The same applies to INCLUDING and
CHAIN as shown below.

The above example reduces the amount of key strokes only slightly compared with that
of Figure 8. But it makes this part of the specification invariant to modifications of the
contexts where Usage and Block occur. The productions for Block and for Usage may be
modified without affecting these symbol computations.

Now consider the computation of nesting depth of blocks in Figure 6. The computation of
Block.depth can also be specified as a symbol computation:

SYMBOL Block COMPUTE

INH.depth = ADD (INCLUDING Block.depth, 1);

END;

In this case the computation is intended to go to the upper contexts of Block, indicated by
INH.depth. That is correct for any context where Block is a descendant of a Statement.
But in the Program context the depth of the root Block must be computed to 0, rather
than by the above symbol computation. So we keep the computation of Figure 6:

RULE: Root ::= Block COMPUTE

Block.depth = 0;

END;

It overrides the above symbol computation: A rule computation overrides a symbol com-
putation for the same attribute.

The example demonstrates a design rule:

General context independent computations are specified by symbol computa-
tions. They may be overridden in special cases by computations in rule contexts.

The technique of overriding can also be used to specify default computations: A symbol
computation specifies an attribute value for most occurrences of the symbol. In some
contexts it is overridden by rule specific computations.

Finally we demonstrate how CHAINS are used in symbol computations. In Figure 11 ad-
dresses are computed for variable definitions. It is rewritten, as shown in Figure 13. In
the second computation THIS.RelAdr occurs twice with different manings: it refers to the
incoming CHAIN value in the call of ADD, whereas the outgoing CHAIN value is defined on the
lefthand-side of the computation. CHAIN accesses are distinguished by their use or definition,
rather than by SYNT and INH as in case of attributes.

CHAIN RelAdr: int;

SYMBOL Block COMPUTE

CHAINSTART HEAD.RelAdr = 0;

END;

SYMBOL Definition COMPUTE

THIS.RelAdr = ADD (THIS.RelAdr, VariableSize);

END;

Figure 13: Symbol Computations for Addresses of Variables

Chapter 4: Symbol Computations 19

4.2 Reuse of Symbol Computations

Symbol computations are a well suited base for reuse of specifications: A computational
concept is specified by a set of symbol computations. Then it is applied by inheriting it
to grammar symbols. (Here the term inheritance is used in the sense of object oriented
programming; it must not be confused with the class of inherited attributes.)

Assume we want to enumerate occurrences of non-recursive language constructs, e. g.
definitions in a block and variable uses in each single statement. We first describe this
computational concept by computations associated to new CLASS symbols that do not occur
in the tree grammar. In Figure 14 use a CHAIN as in the examples of Section 3.3 [Chain],
page 14.

CHAIN Occurrence: int;

ATTR OccNo, TotalOccs: int;

CLASS SYMBOL OccRoot COMPUTE

CHAINSTART HEAD.Occurrence = 0;

THIS.TotalOccs = TAIL.Occurrence;

END;

CLASS SYMBOL OccElem COMPUTE

SYNT.OccNo = THIS.Occurrence;

THIS.Occurrence = ADD (SYNT.OccNo, 1);

END;

Figure 14: Computationel Concept Occurrence Count

The above computations correspond to those for computing addresses in Figure 11. They
are extended by computations of attributes TotalOccs (for the total number of enumer-
ated constructs) and OccNo (for the current number of the enumerated element). Further
computations may use these attributes, instead of referring to the CHAIN, which can be
considered as an implementation mechanism of the enumeration computation.

The CLASS symbols OccRoot and OccElem represent two roles of this computational concept:
The root of a subtree where elements are counted, and the elements to be counted. They
are distinguished from symbols of the tree grammar by specifying them CLASS SYMBOL.

We now apply this count specification to symbols of our tree grammar:

SYMBOL Block INHERITS OccRoot END;

SYMBOL Definition INHERITS OccElem END;

Block inherits the role OccRoot and Definition inherits the role OccElem. Those con-
structs yield the same effect as if the computations for OccRoot (OccElem) were associated
to Block (Definition). As a consequence further computations may use the attributes
Definition.OccNo (the number of a definition in a block), and Block.TotalOccs (the
total number of definitions in that block).

The second enumeration application is specified in the same way:

SYMBOL Statement INHERITS OccRoot END;

SYMBOL Usage INHERITS OccElem END;

Of course we have to make sure that different applications do not interact. For example
a third application enumerating the variable assignments would collide with the definition

20 LIDO – Computations in Trees

enumeration. This computational concept is not applicable to the enumeration of blocks
which are recursive constructs. The specification module library of Eli provides more general
applicable modules, and a mechanism that avoids such collisions. The application of those
library modules is based on the technique of inheritance of computational roles as described
here.

We finally show how several computational concepts may be combined: Assume that we
want to print the total number of enumerated constructs. We again introduce a CLASS

symbol for this computation:

CLASS SYMBOL PrintTotalOccs COMPUTE

printf ("construct in line %d has %d elements\n",

LINE, THIS.TotalOccs);

END;

This computation is applied by adding

SYMBOL Block INHERITS PrintTotalOccs END;

to the specification and correspondingly for Definition. The two INHERITS constructs can
also be combined to one:

SYMBOL Block INHERITS OccRoot, PrintTotalOccs END;

We alternatively could extend the role of the enumeration root OccRoot such that the total
number is always printed by

CLASS SYMBOL OccRoot INHERITS PrintTotalOccs END;

In this case each symbol that inherits the computation of OccRoot also inherits the compu-
tation of PrintTotalOccs.

Chapter 5: Early Computations During Tree Construction 21

5 Early Computations During Tree Construction

In general the execution of specified computations begins when the tree is completely build.
However, certain application tasks require that an action is performed immediately when
an input construct is read. It may be not acceptable to wait until the input is completely
processed. Typical examples are desktop calculators: A formula is evaluated and the re-
sult is output before the next formula is read. Another example is a computation which
influences the input processing, e.g. switch to another input source.

In such cases, these computations (the output of the expression value or the switch of the
input file) can be marked to be executed early using the keyword BOTTOMUP. The Liga
system then tries to arrange the computations such that they are executed already when
their node is constructed.

RULE: Program ::= Sequence END;

RULE: Sequence ::= Sequence Output NewLine END;

RULE: Sequence ::= END;

SYMBOL Expression: Value: int;

RULE: Output ::= Expression COMPUTE

printf ("%d\n", Expression.Value) BOTTOMUP;

END;

RULE: Expression ::= Number COMPUTE

Expression.Value = Number;

END;

RULE: Expression ::= Expression BinOpr Expression COMPUTE

Expression[1].Value =

APPLY (BinOpr.Funct,

Expression[2].Value, Expression[3].Value);

END;

SYMBOL BinOpr: Funct: BinFunct;

RULE: BinOpr ::= ’+’ COMPUTE BinOpr.Funct = Add; END;

RULE: BinOpr ::= ’*’ COMPUTE BinOpr.Funct = Mult; END;

Figure 15: BOTTOMUP Computation for a Desktop Calculator

Figure 15 shows the LIDO specifications for a simple desktop calculator. The printf

operation in the lower context of the Output symbol is marked to be executed early. It
prints the value of a complete expression before the next expression is read. The values of
subexpressions are not printed.

Many other computations in other contexts may contribute values to the marked one: in
this case computations of the Value attribute of subexpressions. Liga tries to arrange
their execution early enough to contribute their values to the marked computation. These
contributing computations should not be marked BOTTOMUP, in order to give Liga the chance
to find a suitable but less restrictive solution.

22 LIDO – Computations in Trees

Arranging computations on which a BOTTOMUP computation depends is determined by the
way trees are build: left-to-right bottom-up. The BOTTOMUP computations may not depend
on computations that belong to context which are higher or to the right in the tree. Fur-
thermore, at tree construction time values can only be propagated upward out of subtrees,
but not to sibling nodes or to uncle nodes.

The following technical detail needs to be considered for tree grammar design in the presence
of BOTTOMUP computations: Usually parsers need one token lookahead. That means, a tree
node is constructed not before the next token is read which is behind the subtree of that
node. In our example the node that has the BOTTOMUP computation is created when the
NewLine token is read. If we had chosen to specify the NewLine in the production of Output
instead, like

RULE: Output::= Expression NewLine COMPUTE ...

Then this node would have been created and the BOTTOMUP computation been executed
later, when the token after the NewLine has been read. That would not yield the desired
effect.

Chapter 6: Interactions within Eli 23

6 Interactions within Eli

This section gives initial information how specifications of computations in trees interact
with other Eli facilities. It should be sufficient for getting started. Other documents have
to be consulted for a deeper understanding of those facilities and the interaction.

6.1 Supplying Tree Computation Specifications to Eli

Specifications as described in this document are written in files named x.lido where x is an
arbitrary name. The specification of larger tasks should be decomposed into single subtasks
specified in separate files each.

Further contributions to LIDO specifications are obtained from instantiation of library mod-
ules. The components of a LIDO specification are comprised by enumerating their names in
a .specs file or by generating them from a .fw file. Section 6.2 [Tree Construction], page 23
describes another contribution to the set of .lido files for tree grammar specification.

It should be pointed out that RULE, SYMBOL, ATTR, and CHAIN constructs for the same names
may occur arbitrary often in several or one single file as long as they do not specify contra-
dicting properties. Computations specified for one RULE or SYMBOL name are accumulated.
The LIGA system processes the concatenation of all .lido files. Hence the reference man-
ual for the language LIDO (see Section “top” in LIDO - Reference Manual) refers to that
compound specification disregarding the composition of single files.

It is highly recommended to simplify the development of specifications by the use of pre-
coined solutions provided by the library of specification modules. For that purpose applica-
ble tasks can be identified in the module library, see Section “top” in Specification Module
Library . The inheritance mechanism as introduced in section Section 4.2 [Inheritance],
page 19 is applied, and the use of the module is stated in a .specs or a .fw file as described
in that document.

6.2 Tree Construction

The specification of computations in trees assume that a tree according to the tree grammar
exists. Usually it is constructed by the structuring phase (scanner and parser) of the lan-
guage processor. There are two different starting points for the design of the tree structure
specifications: the tree grammar or the concrete grammar for the input language.

In general there may be parts of the language that need more attention to the concrete
grammar and others where the computations in the tree grammar should be considered
first. That may give rise to a mixed strategy: Supply the concrete grammar specification
(.con and .sym files) for those parts of the language which are known and fixed, specify tree
grammar rules (in .lido files) where computations are already known to be associated to,
and take care that the whole grammar is covered by either of them. During the refinement of
the computations further tree grammar rules may be added without updating the concrete
grammar specification.

An Eli tool (Maptool, see Section “top” in Syntactic Analysis Manual) combines both
grammar specification fragments, completes each of them, and relates concrete productions
to tree grammar rules such that the parser builds the required tree. That relation is usually
not a 1:1 mapping: Some concrete chain productions are left out in the tree grammar, e. g.

24 LIDO – Computations in Trees

those which describe operators precendences in expressions. The tree grammar may have
chain context which have no correspondence in the concrete grammar, e. g. those which
distinguish different classes of identifier occurrences. The latter may even be introduced to
the tree grammar when they are needed during the refinement of the computations without
updating the concrete grammar specification.

Both the concrete and the tree grammar distinguish literal terminals and named terminals.
If the scanner is generated by Eli no further specification is needed for literal terminals,
like ’begin’ or ’:=’. For each named terminal, like Name or Number, a .gla specification
has to describe its notation. The named terminals usually carry token specific information
to be used in tree computations, e. g. the encoding of an identifier token or the value of
a number. The LIDO specification should state the type of that information using a TERM

construct, e. g.

TERM Name: int;

Since GLA generated scanners pass such token information by values of type int, LIGA
assumes that type if the TERM construct is omitted for a named terminal. Hence, the above
TERM construct is redundant for terminals created by GLA. It is needed for terminal created
by other scanners or by computed tree extension.

6.3 Implementing Tree Computations

The implementation of functions, types, constants, and variables used in tree computations
is not specified within the .lido specification. They have to be made available to the
generated evaluator. No further user action is necessary if they are defined in C (like the
basic C types) or in the standard I/O library stdio.h (like printf), or if they are predefined
in LIDO (like ADD, see Section “Predefined Entities” in LIDO – Reference Manual, or
if they are provided by Eli tools (e. g. PDL, PTG). Otherwise the user has to supply
implementations of the used entities by C definition.

It is recommended to apply a modular style for those implementations: Supply C modules
consisting of a m.c and a m.h file each, where the latter describes the objects exported by
the module. (It is also possible to implement computations by CPP-macros.)

The file names m.h and m.c of all such user supplied C-modules have to be mentioned in
some .specs file. Furthermore one or several .head files or .HEAD.phi files have to be
provided. They have to contain a line

#include "m.h"

for each module m, making it available to the generated evaluator. It is recommended to
protect each m.h file against multiple inclusion by suitable CPP-commands.

If a module needs some operations for initialization or finalization they can be written (as
function calls) into files m.init or m.finl (or into .INIT.phi or .FINL.phi files).

6.4 Specification Errors

Eli checks the whole set of specifications extensively. It generates a language processor only
if no errors are found. Error reports and warnings are obtained by a derivation like

x.specs:exe:warning

The error reports are related to the specification file (and line and column coordinates in
it) where Eli found the error symptom, if that is possible. In the following we give hints

Chapter 6: Interactions within Eli 25

how to react on the most common classes of errors. As a general rule one can obtain more
information about an error symptom by applying the derivation

x.specs:exe:help

Violations of the LIDO specification language definition are reported with references to the
.lido files. In most cases one should be able to deduce the correction from the report text,
consulting the LIDO reference manual if necessary. Additionally the following information
might be helpful:

A report saying

VOID attribute not allowed here

in most cases indicates that an attribute is used without specifying its type, VOID is assumed
then. The reason of such an error often is a misspelled attribute name.

It may be helpful to derive

x.specs:showFe

and look at the file attr.info. It gives an overview on all attributes the system found
so far in the .lido files. (Attributes that stem from inheritance are not yet found in this
phase.)

A report saying

attribute class in conflict

indicates that computations in lower contexts and in upper contexts define that attribute.
One has to rewrite them such that only one class is used.

If problems are reported with remote dependencies one should check the use of those con-
structs within the tree grammar structure. In special difficult cases more information can
be obtained by deriving

x.specs:ExpInfo

That file describes how each remote access construct can be replaced by a set of equivalent
computations propagating the accessed values through adjacent contexts.

LIGA also checks whether the dependencies between the computations are acyclic for any
tree, and reports if they are cyclic. In that case more information can be obtained by
deriving

x.specs:OrdInfo

or by using the tool gorto (see Section “top” in GORTO - Graphical Dependency Analyzer)
for tracing dependencies graphically.

In rather seldom cases LIGA may report that it could not find an evaluation order, although
the dependencies are acyclic. If such a situation occurs it is usually caused by several sets
of far ranging dependencies where the computations in one set are independent of those
of the other sets. Adding additional dependencies that specify some computation sets to
depend on others often solves the problem. More information on the problem is obtained
by using gorto. It is highly recommended NOT to try to avoid such situations before they
are reported, since they occur rather seldom.

LIGA can not perform type checking on user functions that are called in LIDO expressions.
Hence, typing errors and errors on undefined names may be reported when the generated
evaluator is compiled. Those reports originally refer to C file named visitprocs.c. Eli
traces them back to the line of the computation in the LIDO text where they originate from.

26 LIDO – Computations in Trees

In most cases that will be sufficient to identify the problem. But, one has to keep in mind
that the report text is in terms of C rather than of LIDO, and that the line number only
identifies a computation, rather than the exact line of the problem spot within multiple line
computations. In doubtful cases it may be necessary to look at the C code directly.

In case of undefined type names often avalanche errors are reported by the C compiler with
respect to several product files. They can not be traced back to some specification file.

If functions are used in a .lido file but are not made available for the evaluator, the error
might not be reported before the whole program is linked.

Index 27

Index

.

.c files . 24

.con files . 23

.finl files . 24

.FINL.phi files . 24

.h files . 24

.head files . 24

.HEAD.phi files . 24

.init files . 24

.INIT.phi files . 24

.lido files . 23

.specs files . 24

.sym files . 23

A
accumulating attribute . 9
accumulating computations . 8
adjacent context . 3
ATTR . 5
attribute . 5
attribute class . 6
attribute class in conflict 25
attribute type . 5

B
BOTTOMUP . 21

C
CHAIN . 11, 14, 17
CHAINSTART . 14
class . 6
CLASS symbol . 19
compiler messages . 25
computation . 5
concrete grammar . 23
CONSTITUENTS . 11, 12, 17
CPP . 24
cyclic dependencies . 25

D
dependency . 5
dependent domputations . 5

E
Eli . 23
error messages . 24
ExpInfo . 25

F
function . 5

G
GLA . 24

H
HEAD . 14
help derivation . 24

I
implementation of C entities 24
INCLUDING . 11, 17
INH . 6, 17
inheritance . 19, 23
inherited . 6
INHERITS . 19

L
LISTOF production . 4
literal terminal . 4
lower context . 3

M
mapping . 23
Maptool . 23
module library . 23

N
named terminal . 4
nonterminal . 3

O
overriding computations . 18

P
postcondition . 7
precondition . 7
predefined entities . 24
predefined macro . 6
production . 3

R
remote dependencies . 12, 25
remote rependencies . 11

28 LIDO – Computations in Trees

RULE . 5
rule context . 3

S
scanner . 24
SHIELD clause . 13
showFe . 25
single assignment rule . 6
state attribute . 7
state dependencies . 6
symbol . 3
SYMBOL . 6, 17
symbol computation . 17
SYNT . 6, 17
synthesized . 6

T
TAIL . 14
TERM . 6, 24

terminal . 3, 6, 24
THIS . 17
tree grammar . 3, 23
tree structure . 3

U
upper context . 3

V
value . 6
value dependencies . 5
visitprocs messages . 25
VOID . 8
VOID attribute not allowed here 25

W
warning messages . 24
WITH clause . 13

	Tree Structure
	Dependent Computations
	Value Dependencies
	State Dependencies
	Accumulating Computations

	Remote Dependencies in Trees
	Access to a Subtree Root
	Access to Contexts within a Subtree
	Left-to-Right Dependencies

	Symbol Computations
	Basic Symbol Computations
	Reuse of Symbol Computations

	Early Computations During Tree Construction
	Interactions within Eli
	Supplying Tree Computation Specifications to Eli
	Tree Construction
	Implementing Tree Computations
	Specification Errors

	Index

