
Lexical Analysis

$Revision: 2.29 $

Compiler Tools Group
Department of Electrical and Computer Engineering

University of Colorado
Boulder, CO, USA

80309-0425





i

Table of Contents

1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Matching operator characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Character classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Building complex regular expressions . . . . . . . . . . . . . . . . . . . . . . 6
1.1.4 What happens if the specification is ambiguous? . . . . . . . . . . . 7

1.2 Auxiliary Scanners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Available scanners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Building scanners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Token Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Available processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Building processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Canned Symbol Descriptions . . . . . . . . . . . . . . . . . 17
2.1 Available Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Definitions of Canned Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Spaces, Tabs and Newlines . . . . . . . . . . . . . . . . . . . 21
3.1 Maintaining the Source Text Coordinates . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Restoring the Default Behavior for White Space . . . . . . . . . . . . . . . 22
3.3 Making White Space Illegal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Literal Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 Overriding the Default Treatment of Literal Symbols . . . . . . . . . . 25
4.2 Using Literal Symbols to Represent Other Things . . . . . . . . . . . . . 27

5 Case Insensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 A Case-Insensitive Token Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Making Literal Symbols Case Insensitive . . . . . . . . . . . . . . . . . . . . . . 29

6 The Generated Lexical Analyzer Module . . . . 31
6.1 Interaction Between the Lexical Analyzer and the Text . . . . . . . . 31
6.2 Resetting the Scan Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 The Classification Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3.1 Setting coordinate values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3.2 Deciding on a continuation after a classification . . . . . . . . . . . 34
6.3.3 Returning a classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.4 An Example of Interface Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39





1

The purpose of the lexical analyzer is to partition the input text, delivering a sequence
of comments and basic symbols. Comments are character sequences to be ignored, while
basic symbols are character sequences that correspond to terminal symbols of the gram-
mar defining the phrase structure of the input (see Section “Context-Free Grammars and
Parsing” in Syntactic Analysis).

A user must define the forms of comments and the forms of all basic symbols correspond-
ing to non-literal terminal symbols of the grammar. Eli can deduce the form of a literal
terminal symbol from the grammar specification.

The definition consists of one or more type-‘gla’ files. Each line of a type-‘gla’ file
describes a set of character sequences. If a line begins with an identifier followed by a colon
(:), then all of the character sequences described by the line are instances of the non-literal
terminal symbol named by that identifier; otherwise they are comments.

Here is an example of a type-‘gla’ file:

HexInteger: $0[Xx][0-9A-Fa-f]+

$! (auxEOL)

Identifier: C_IDENTIFIER

The first line of this specification uses a regular expression to define a hexadecimal integer
as a zero, followed by the letter X (either upper or lower case) and one or more hexadecimal
digits represented in the usual way. In the second line, one form of comment is defined by
a regular expression and the name of a C routine. The C routine will be invoked when
the regular expression has been matched. This approach allows the user to define char-
acter sequences operationally when a declarative definition is tedious or does not support
appropriate error reporting.

Since certain lexical structures are common to many languages, Eli provides a library of
definitions that can be invoked simply be giving their names. C_IDENTIFIER, in the third
line, is such an invocation. The effect of the third line is to define the form of the basic
symbol Identifier as that of an identifier in C: a letter or underscore followed by some
sequence of letters, digits and underscores.

Chapter 1 defines the usage, form and content of specifications provided by the user as
type-‘gla’ files. Those specifications may refer to canned descriptions, which are defined
in Chapter 2. Chapter 3 presents the default processing of spaces, tabs and newlines and
explains how to define other strategies. The treatment and meaning of literal terminal
symbols is discussed in Chapter 4, and Chapter 5 explains how a generated lexical analyzer
can be made insensitive to the case of letters. Complex lexical analysis problems may require
modification of the behavior of the generated module; Chapter 6 discusses the possibilities.





Chapter 1: Specifications 3

1 Specifications

A specification consists of a regular expression, possibly the name of an auxiliary scanner,
and possibly the name of a token processor. Sequences of input characters are classified
initially on the basis of the regular expression they match. If the line containing the regular
expression also contains the name of an auxiliary scanner, then that scanner is invoked after
the regular expression has been matched. An auxiliary scanner may lengthen or shorten
the character sequence being classified. If the line containing the regular expression also
contains the name of a token processor, then that token processor is invoked after any
auxiliary scanner. A token processor may change the initial classification of the sequence,
and may also calculate a value representing the sequence.

Specifications are provided in type-‘gla’ files whose contents obey the following phrase
structure:

File: ( Specification NewLine )* .

Specification:

[ TokenName ’:’ ]

Pattern

[ ’(’ AuxiliaryScannerName ’)’ ]

[ ’[’ TokenProcessorName ’]’ ] .

Pattern: RegularExpression / CannedSpecificationName .

TokenName: Identifier .

CannedSpecificationName: Identifier .

AuxiliaryScannerName: Identifier .

TokenProcessorName: Identifier .

An Identifier is defined as in C, and a type-‘gla’ file may contain arbitrary empty
lines, C comments and pre-processor directives. Comments may also be written as character
sequences enclosed in braces ({ }) that do not themselves include braces.

The remainder of this chapter explains each of these components of the description in
detail.

1.1 Regular Expressions

A regular expression is a pattern that defines a set of character sequences: If the regular ex-
pression matches a particular sequence then that sequence is a member of the set; otherwise
it is not a member. Here is a summary of Eli’s regular expression notation:

c matches the character c, unless c is space, tab, newline or one of \ " . [ ] ^ (

) | ? + * { } / $ <

\c matches c (see Section 1.1.1 [Matching Operator Characters], page 4)

"s" matches the sequence s (see Section 1.1.1 [Matching Operator Characters],
page 4)

. matches any character except newline

[xyz] matches exactly one of the characters x, y or z

[^xyz] matches exactly one character that is not x, y or z



4 Lexical Analysis

[c-d] matches exactly one of the characters whose ASCII codes lie between the codes
for c and d (inclusive)

(e) matches a sequence matched by e

ef matches a sequence matched by e followed by a sequence matched by f

e|f matches either a sequence matched by e or a sequence matched by f

e? matches either an empty sequence or a sequence matched by e

e+ matches one or more occurrences of a sequence matched by e

e* matches either an empty sequence or one or more occurrences of a sequence
matched by e

e{m,n} matches a sequence of no fewer than m and no more than n occurrences of a
sequence matched by e

Each of the regular expressions e?, e+, e* and e{m,n} matches the longest sequence of
characters consonant with its definition.

In a type-‘gla’ file, each regular expression is delimited on the left by $ and on the right
by white space:

$a57D

$[0-9]+

$[a-zA-Z_][a-zA-Z_0-9]*

The first example matches the single character sequence a57D, while the second matches
a sequence of one or more digits. The third describes C-style identifiers: an initial letter or
underscore, followed by zero or more alphanumeric characters or underscores.

1.1.1 Matching operator characters

A regular expression consists of text characters (which match the corresponding characters
in the input character sequences) and operator characters (which specify repetitions, choices
and other features). The operator characters are the following:

\ " . [ ] ^ ( ) | ? + * { } / $ <

Space, tab, newline and characters appearing in this list are not text characters; every other
character is a text character.

If an operator character is to match an instance of itself in the input sequence then
it must be marked in the regular expression as being a text character. This can be done
by preceding it with backslash (\). Any occurrence of an operator character (including
backslash) that is preceded by backslash loses its operator status and is considered to be
a text character. The text characters space, tab and newline are represented as \040, \t
and \n respectively; \b represents the text character “backspace”. Any character except
the ASCII NUL (code 0) can also be represented by a backslash, followed by zero, followed
by the ASCII code for the character written as a sequence of up to three octal digits (the
representation of a space character always has this form).

A sequence of operator characters can be used as a sequence of text characters by sur-
rounding the sequence with double quote operators ("):



Chapter 1: Specifications 5

xyz"++"

"xyz++"

Both of these patterns match the string xyz++. As shown, it is harmless but unnecessary
to quote a character that is not an operator.

Backslash is also effective within a sequence surrounded by double quote operators, and
must be used to mark backslash, quote and white space:

"\t\\\040\"\040.\040[\040]\040^"

This pattern matches an initial segment of the operator character display at the beginning
of this section.

1.1.2 Character classes

A character class is a pattern that defines a set of characters and matches exactly one
character from that set. The simplest character class representation is the period (.), which
defines the set of all characters except newline. Character classes can also be represented
using the operator pair [ ]. [Abc] defines the set of three characters A, b, and c.

Within square brackets, most operator meanings are ignored. Only four characters are
special: \, -, ^ and ]. In particular, the double quote character (") is not considered
special and therefore cannot be used to surround a sequence of operator characters. The \
character provides the usual escapes within character class brackets. Thus [[\]] matches
either [ or ], because \ causes the first ] in the character class representation to be taken
as a normal character rather than the closing bracket of the representation. The following
specification causes an error, however:

[["]"]

The quote is not special in a character class, so the first ] is the closing bracket of the set.
The second " is therefore outside the definition of the character class, and is taken as the
beginning of a quoted string containing the second ]. Since there is no closing quote for
this string, it is erroneous.

If the first character after the opening bracket of a character class is ^, the set defined
by the remainder of the character class is complemented with respect to the computer’s
character set. Using this notation, the character class represented by . can be described as
[^\n].

If ^ appears as any character of a class except the first, it is not considered to be an
operator. Thus [^abc] matches any character except a, b, or c but [a^bc] or [abc^]

matches a, b, c or ^.

Within a character class representation, - can be used to define a set of characters in
terms of a range. For example, a-z defines the set of lower-case letters and A-Z defines the
set of upper-case letters. The endpoints of a range may be specified in either order (i.e.
both 0-9 and 9-0 define the set of digits). Ranges can also be defined in terms of specific
ASCII codes: \041-\0176 is the set of all visible ASCII characters. Using - between any
pair of characters that are not both upper case letters, both lower case letters, or both digits
defines an implementation-dependent set and will generate a warning.

Any number of ranges can be used in the representation of a character class. For example,
[a-z0-9<>_] will match any lower case letter, digit, angle bracket or underline while [^a-
zA-Z] will match any character that is not a letter. If it is desired to include the character



6 Lexical Analysis

- in a character class, it should either be escaped with \ or it should occupy the first or last
position. Thus [-+0-9] will match +, - or any digit, as will [0-9\-+].

1.1.3 Building complex regular expressions

Single characters, character strings and character classes are all simple regular expressions.
Each matches a particular set of character sequences. More complex patterns are built
from these simple regular expressions by concatenation, alternation and repetition. The
components of a complex pattern may be grouped by enclosing them in parentheses; a
parenthesized expression behaves like a simple regular expression in further compositions.

Components must not be separated by white space, because white space terminates a
regular expression.

When a complex regular expression is written as a sequence of components, the resulting
pattern will match a sequence of characters consisting of a subsequence matching the first
component, followed by a subsequence matching the second component, and so on:

[1-9]\.[0-9][0-9]

This complex expression has four components: three character classes and the text character
. (the backslash converts the operator character . to a text character). It matches character
sequences like 2.54 and 9.99, but not 0.59, 45.678 or 1x23.

When the components of a complex regular expression are separated by the operator |,
the resulting pattern will match a sequence of characters that matches at least one of the
components:

[A-Za-z]|[1-9][0-9]&

This complex expression has two immediate components: a character class and a complex
expression that is the result of concatenating two character classes and a single character.
The complete expression matches character sequences like B and 10&, but not X11 or A&.

Concatenation takes precedence over alternation in constructing a complex regular ex-
pression, so this example is equivalent to [A-Za-z]|([1-9][0-9]&). Parentheses can be
used to group the expression differently:

([A-Za-z]|[1-9][0-9])&

This complex expression also has two immediate components, but they are a parenthesized
expression and a single character. The complete expression matches character sequences
like B& and 10&.

When a complex regular expression consists of a single component followed by the opera-
tor ?, the resulting pattern will match either an empty sequence or a sequence of characters
that matches the component:

(-|\+?)[1-9]

Here the operand of ? is the text character +. This complex expression matches character
sequences like -1, +2 and 3. In each case, the pattern matches the longest sequence of
characters consonant with its definition.

The ? operator takes precedence over both concatenation and alternation. If its operand
is a complex expression involving either of these operations, that complex expression must
be parenthesized.



Chapter 1: Specifications 7

When a complex regular expression consists of a single component followed by the oper-
ator +, the resulting pattern will match a sequence of characters that matches one or more
successive occurrences of a sequence matching the component:

[0-9]+

This complex expression has one immediate component: a character class. It matches
character sequences like 0 and 1019. In each case, the pattern matches the longest sequence
of characters consonant with its definition.

The + operator takes precedence over both concatenation and alternation. If its operand
is a complex expression involving either of these operations, that complex expression must
be parenthesized.

When a complex regular expression consists of a single component followed by the op-
erator *, the resulting pattern will match a sequence of characters that matches an empty
sequence or one or more successive occurrences of a sequence matching the component:

[1-9][0-9]*

This complex expression has two immediate components: a character class and a complex
expression whose operator is *. That complex expression, in turn, has a single character
class component. The complete expression matches character sequences like 1 and 2992,
but not 0 or 0101. In each case, the pattern matches the longest sequence of characters
consonant with its definition.

The * operator takes precedence over both concatenation and alternation. If its operand
is a complex expression involving either of these operations, that complex expression must
be parenthesized. For example, ([1-9][0-9])* would match character sequences like 1019
and 2992, but not 1 or 123.

When a complex regular expression consists of a single component followed by the oper-
ator {m,n} (m and n integers greater than 0), the resulting pattern will match a sequence
of characters that matches no fewer than m and no more than n successive occurrences of
a sequence matching the component:

[A-Za-z][A-Za-z0-9]{1,5}

This complex expression has two immediate components: a character class and a complex
expression whose operator is {1,5}. That complex expression, in turn, has a single character
class component. The complete expression matches character sequences like A1 and xyzzy,
but not identifier or 01July. In each case, the pattern matches the longest sequence of
characters consonant with its definition.

The {m,n} operator takes precedence over both concatenation and alternation. If its
operand is a complex expression involving either of these operations, that complex ex-
pression must be parenthesized. For example, ([1-9][0-9]){1,2} would match character
sequences like 10 and 2992, but not 1, 123 or 123456.

1.1.4 What happens if the specification is ambiguous?

When more than one expression can match the current character sequence, a choice is made
as follows:

1. The longest match is preferred.

2. Among rules which match the same number of characters, the rule given first is pre-
ferred.



8 Lexical Analysis

Thus, suppose we have the following descriptions:

Limit: $55

Speed: $[0-9]+

If the input text is 550kts then the sequence 550 is classified as Speed, because [0-

9]+ matches three characters while 55 matches only two. If the input is 55mph then both
patterns match two characters, and the sequence 55 is classified as Limit because Limit

was given first. Any shorter sequence of digits (e.g. 5kph) would not match the regular
expression 55 and so the Speed classification would be used.

When more than one type-‘gla’ file is provided, specifications in different files have no
defined order. Thus if Limit and Speed appeared in different files, classification of the
sequence 55 would be undefined. If an ambiguity between two descriptions is to be resolved
on the basis of their order of appearance, they must be given within the same type-‘gla’
file.

1.2 Auxiliary Scanners

An auxiliary scanner is a routine to be invoked after the pattern described by the regular
expression has been matched. The routine is passed a pointer to the matched string and
the length of that string, and it returns a pointer to the first character that is not to be
considered part of the string matched. Thus an auxiliary scanner may increase, reduce or
leave unchanged the number of characters matched by the regular expression. This allows
a user to specify operationally patterns that are tedious or impossible to describe using
regular expressions (e.g. nested comments), or that require special operations during the
match (e.g. sequences containing tabs or newlines — see Chapter 3 [White Space], page 21),
or that would benefit from specialized error reporting.

An auxiliary scanner is invoked by giving its name, surrounded by parentheses (( )), on
the same line as the associated regular expression:

$-- (auxEOL)

This specification invokes the auxiliary scanner auxEOL whenever a sequence of two dashes
is recognized, and passes it a pointer to the first of the two dashes and a length of 2. As
described below, auxEOL returns a pointer to the first character of the next line, after having
updated the coordinate information. This specification is the implementation of the canned
description ADA_COMMENT.

The remainder of this section describes the auxiliary scanners that are available in the
Eli library, and also explains how to implement auxiliary scanners for tasks that are specific
to your problem.

1.2.1 Available scanners

All of the auxiliary scanners described in this section can be used simply by mention-
ing their names in a specification line. They can also be invoked from arbitrary C pro-
grams if the invoker includes the header file ‘ScanProc.h’. (The source code for that file is
‘$elipkg/Scan/ScanProc.h’.)

The name of the file containing each available auxiliary scanner is also given in this
section. It is not necessary to examine this file in order to use the auxiliary scanner, but
sometimes an existing auxiliary scanner can be useful as a starting point for solving a similar
problem (see Section 1.2.2 [Building scanners], page 12).



Chapter 1: Specifications 9

auxNUL This routine is invoked automatically when the first character of a sequence
is the ASCII NUL character, a pattern that cannot be specified by a regular
expression. In that case, the character sequence matched by the associated
pattern is an empty sequence. If information remains in the current input
file, auxNUL returns a pointer to the empty sequence at the beginning of that
information. Effectively, this is a pointer to the new information.

This routine is also invoked by any scanner that must accept a newline character
and continue. Since an ASCII NUL character signalling the end of the current
information in the buffer can occur immediately after any newline, a scanner
that accepts a newline and continues must check for NUL. If a NUL is found,
the scanner invokes auxNUL. Here is a typical code sequence that such a scanner
might use. The variable p is the scan pointer and start points to the beginning
of the current token:

if (*p == ’\0’) {

int current = p - start;

TokenStart = start = auxNUL(start, current);

p = start + current;

StartLine = p - 1;

if (*p == ’\0’) {

/* Code to deal appropriately with end-of-file.

* Some of the possibilities are:

* 1. Output an error report and return p

* 2. Simply return p

* 3. Move to another file and continue

***/

}

}

If information remains in the current input file, the library version of auxNUL (see
Section “Text Input” in Library Reference Manual) appends that information to
the character sequence matched by the associated pattern, possibly relocating
the character sequence matched by the associated pattern. It returns a pointer
to the first character of the sequence matched by the associated pattern. Source
code: ‘$elipkg/Scan/auxNUL.c’.

To obtain different behavior when the first character of a sequence is the ASCII
NUL character, supply your own routine with the name auxNUL in a type-‘c’
file. The easiest way to do this is to copy the source code for the library routine
into a local file and then modify it.

auxEOF This routine is invoked automatically when the first character of a sequence
is the ASCII NUL character, a pattern that cannot be specified by a regular
expression, and no information remains in the current input file. In that case,
the character sequence matched by the associated pattern is an empty sequence.

The library version of auxEOF simply returns the argument supplied to it.
Source code: ‘$elipkg/Scan/auxEOF.c’.

To obtain different behavior when the first character of a sequence is the ASCII
NUL character, and no information remains in the current input file, supply



10 Lexical Analysis

your own routine with the name auxEOF in a type-‘c’ file. The easiest way to
do this is to copy the source code for the library routine into a local file and
then modify it.

coordAdjust

Leaves the character sequence matched by the associated pattern unchanged.
Updates the coordinate information to reflect the tabs and newlines in that
sequence. Source code: ‘$elipkg/Scan/coordAdjust.c’

auxNewLine

Leaves the character sequence matched by the associated pattern unchanged.
Updates the coordinate information under the assumption that the last char-
acter of that sequence is a newline. (This is a special case that can be handled
more efficiently than the general case, for which coordAdjust would be used.)
Source code: ‘$elipkg/Scan/auxNewLine.c’

auxTab Leaves the character sequence matched by the associated pattern unchanged.
Updates the coordinate information under the assumption that the last char-
acter of that sequence is a tab. (This is a special case that can be handled
more efficiently than the general case, for which coordAdjust would be used.)
Source code: ‘$elipkg/Scan/auxTab.c’

auxEOL Extends the character sequence matched by the associated pattern to
the end of the current line, including the terminating newline. Updates
the coordinate information to reflect the new position. Source code:
‘$elipkg/Scan/auxScanEOL.c’

auxNoEOL Extends the character sequence matched by the associated pattern to the
end of the current line, but does not include the terminating newline.
Updates the coordinate information to reflect the new position. Source code:
‘$elipkg/Scan/auxNoEOL.c’

auxCString

Completes a C string constant when provided with the opening quote ("). Up-
dates the coordinate information to reflect the tabs and newlines in that se-
quence. Source code: ‘$elipkg/Scan/CchStr.c’.

auxCChar Completes a C character constant when provided with the opening quote (’).
Source code: ‘$elipkg/Scan/CchStr.c’.

auxCComment

Completes a C comment when provided with the opening delimiter (/*). Up-
dates the coordinate information to reflect the tabs and newlines in the com-
ment.

The comment is terminated by the delimiter */, and may not contain nested
comments.

Source code: ‘$elipkg/Scan/Ccomment.c’

auxM2String

Completes a string constant when provided with the opening quote, possibly
followed by other characters. Updates the coordinate information to reflect the
tabs in that sequence.



Chapter 1: Specifications 11

The string constant is terminated by an occurrence of the opening quote. If a
newline or the end of the input text is reached before the constant terminates,
auxM2String reports an error.

For Modula2, the opening quote is either the character ’ or the character ".
This auxiliary scanner simply uses the first character of the string matched
by the regular expression as the opening quote character, so it can complete
any sequence of characters that is terminated by the first character, and is
contained wholly within a single source line. Note that the characters matched
by the regular expression are not re-scanned for a closing quote.

Source code: ‘$elipkg/Scan/M2chStr.c’

auxM3Comment

Completes a Modula2 or Modula3 comment when provided with the opening
delimiter ((*). Updates the coordinate information to reflect the tabs and
newlines in the comment.

The comment is terminated by the delimiter *), and may contain nested com-
ments.

Source code: ‘$elipkg/Scan/M3comment.c’

auxPascalString

Completes a string constant when provided with the opening quote, possibly
followed by other characters. Updates the coordinate information to reflect the
tabs in that sequence.

The string constant is terminated by an occurrence of the opening quote that
is not immediately followed by another occurrence of the opening quote. (Thus
the opening quote character may appear doubled within the string.) If a new-
line or the end of the input text is reached before the constant terminates,
auxPascalString reports an error.

For Pascal, the opening quote is the character ’. This auxiliary scanner simply
uses the first character of the string matched by the regular expression as the
opening quote character, so it can complete any sequence of characters that
is terminated by a single occurrence of the first character, and not by two
successive occurrences of that character, and is contained wholly within a single
source line. Note that the characters matched by the regular expression are not
re-scanned for a closing quote.

Source code: ‘$elipkg/Scan/pascalStr.c’

auxPascalComment

Completes a Pascal comment when provided with the opening delimiter (either
{ or (*). Updates the coordinate information to reflect the tabs and newlines
in the comment.

A comment is terminated by either the delimiter } or the delimiter *), regardless
of the opening delimiter. Comments may not be nested.

Source code: ‘$elipkg/Scan/pascalCom.c’

Ctext Completes a C compound statement when provided with the opening brace
({). Updates the coordinate information to reflect the tabs and newlines in the
compound statement.



12 Lexical Analysis

A compound statement is terminated by the matching close brace (}). Com-
pound statements may be nested, and unmatched braces may be embedded in
C strings, character constants or comments.

Source code: ‘$elipkg/Scan/Ctext.c’

1.2.2 Building scanners

All auxiliary scanners obey the same interface conventions:

extern char *Name(char *start, int length);

/* Auxiliary scanner "Name"

* On entry-

* start points to the first character matching the associated

* regular expression

* length=number of characters matching the associated

* regular expression

* On exit-

* Name points to the first character that does not belong to the

* character sequence being classified

***/

Unless otherwise stated, Name>=start on return, and all characters in the half-open interval
[start,Name) are in memory.

Any auxiliary scanner that passes over tabs or newline characters must update coor-
dinate information (see Section 3.1 [Maintaining the Source Text Coordinates], page 21).
In addition, if the character following a newline is an ASCII NUL then the source buffer
must be refilled (see Section “Text Input” in Library Reference Manual). The easiest way
to develop an auxiliary scanner is therefore to start with one from the library that solves
a similar problem. Source file names for all of the available auxiliary scanners are given
in the previous subsection. To obtain a copy of (say) the source code for auxNUL as file
‘MyScanner.c’ in your current directory, give the Eli request:

-> $elipkg/Scan/auxNUL.c > MyScanner.c

After modifying ‘MyScanner.c’, simply add its name to your type-‘specs’ file to make it
available.

1.3 Token Processors

A token processor is a routine to be invoked after the pattern described by the regular
expression has been matched, and after any associated auxiliary scanner has been invoked.
It is passed a pointer to the matching character sequence, the length of that sequence,
a pointer to an integer variable containing the classification, and a pointer to an integer
variable to hold a value representing the character sequence. The token processor may
change the classification, and may compute a value to represent the sequence.

A token processor is invoked by giving its name, surrounded by brackets ([ ]), on the
same line as the associated regular expression:

Integer: $[0-9]+ [mkint]

This specification invokes the token processor mkint whenever a sequence of digits is rec-
ognized. The arguments are a pointer to the first digit, the length of the digit sequence, a



Chapter 1: Specifications 13

pointer to an integer variable containing the classification code for Integer, and a pointer
to an integer variable to hold a value representing the digit sequence. As described below,
mkint leaves the character sequence and its classification unchanged and sets the value to
the decimal integer denoted by the digit sequence. This specification is the implementation
of the canned description PASCAL_INTEGER.

This section describes the token processors that are available in the Eli library, and also
explains how to implement token processors for tasks that are specific to your problem.

1.3.1 Available processors

All of the token processors described in this section can be used simply by mentioning
their names in a specification line. They can also be invoked from arbitrary C programs
if the invoker includes the header file ‘ScanProc.h’. (The source code for that file is
‘$elipkg/Scan/ScanProc.h’.)

The name of the file containing each available token processor is also given in this section.
It is not necessary to examine that file in order to use the token processor, but sometimes
an existing token processor can be useful as a starting point for solving a similar problem
(see Section 1.3.2 [Building Processors], page 14).

c_mkchar Assumes that the character sequence has the form of a C character constant.
Sets the value to the integer encoding of that character constant. Does not
alter the initial classification. Source file: ‘$elipkg/Scan/CchStr.c’.

c_mkint Assumes that the character sequence has the form of a C integer constant. Sets
the value to the integer represented by that constant. Does not alter the initial
classification. Source file: ‘$elipkg/Scan/int.c’.

c_mkstr Assumes that the character sequence has the form of a C string constant. Stores
a new copy of that constant in the character storage module and sets the value
to the index of that copy (see Section “Character String Storage” in Library
Reference Manual). If the character constant contains an escape sequence rep-
resenting ASCII NUL, it is truncated and an error report is issued. The last
character of the stored constant is the character preceding the first NUL. Does
not alter the initial classification. Source file: ‘$elipkg/Scan/CchStr.c’.

EndOfText

This processor is invoked automatically when the end of the input text is
reached. It assumes that the character sequence is empty, and does nothing.
Source file: ‘$elipkg/Scan/dflteot.c’.

To obtain different behavior when the end of the input text is reached, supply
your own routine with the name EndOfText in a type-‘c’ file. The easiest way
to do this is to copy the source code for the library routine into a local file and
then modify it.

lexerr Reports that the character sequence is not a token. Does not alter the initial
classification, and does not compute a value. There is no source file for this
token processor; it is a component of the scanner itself, but its interface is
exported so that it can be used by other modules.

mkidn Looks the character sequence up in the identifier table (see Section “Unique
Identifier Management” in Library Reference Manual). If it is not in the ta-



14 Lexical Analysis

ble, it is added with its classification unchanged. Otherwise mkidn changes the
initial classification to the classification given by the identifier table. (The iden-
tifier table can be initialized with pre-classified character strings, see Chapter 4
[Literal Symbols], page 25.)

In any case, mkidn sets the value to the (unique) index of the character sequence
in the character storage module (see Section “Character String Storage” in
Library Reference Manual). Source file: ‘$elipkg/Scan/idn.c’.

mkint Assumes that the character sequence consists of one or more decimal digits.
Sets the value to the integer denoted by that sequence of digits. Does not alter
the initial classification. Source file: ‘$elipkg/Scan/int.c’.

mkstr Stores a new copy of the character sequence in the character storage module
and sets the value to the index of that copy (see Section “Character String
Storage” in Library Reference Manual). Does not alter the initial classification.
Source file: ‘$elipkg/Scan/str.c’.

modula_mkint

Assumes that the character sequence consists of one or more hexadecimal digits,
possibly followed by a radix marker. Sets the value to the integer denoted by
that sequence of digits, interpreted in the given radix. Does not alter the initial
classification.

Valid radix markers are B and C (indicating radix 8), and H (indicating radix
16). Sequences of digits not followed by a radix marker are assumed to be radix
10.

Source file: ‘$elipkg/Scan/M2int.c’.

1.3.2 Building processors

All token processors obey the same interface conventions:

extern void Name(const char *start, int length, int *syncode, int *intrinsic);

/* Token processor "Name"

* On entry-

* start points to the first character of the sequence being classified

* length=length of the sequence being classified

* syncode points to a location containing the initial classification

* intrinsic points to a location to receive the value

* On exit-

* syncode points to a location containing the final classification

* intrinsic points to a location containing the value (if relevant)

***/

The token processor can change the classification of the character sequence. It may carry
out any computation whatsoever, involving arbitrary modules, to obtain the information it
needs. Eli generates a file called ‘termcode.h’ that contains #define directives specifying
the classification code for each symbol appearing before a colon at the beginning of a line
in a type-‘gla’ file. Thus if name: ... is a line in a type-‘gla’ file, a processor can use the
following sequence to change the classification of any character sequence, including one that
is initially classified as a comment, to name:



Chapter 1: Specifications 15

#include "termcode.h"

...

*syncode = name;

...

All comments are classified by the value of the symbol NORETURN, exported by the lexical
analyzer module in file ‘gla.h’. A token processor can cause the character sequence matched
by its associated regular expression to be considered a comment by setting the classification
to NORETURN:

#include "gla.h"

...

*syncode = NORETURN;

...

The easiest way to develop a token processor is to start with one from the library that
solves a similar problem. Source file names for all of the available token processors are given
in the previous subsection. To obtain a copy of (say) the source code for EndOfText as file
‘MyProcessor.c’ in your current directory, give the Eli request:

-> $elipkg/Scan/dflteot.c > MyProcessor.c

After modifying ‘MyProcessor.c’, simply add its name to your type-‘specs’ file to make it
available.





Chapter 2: Canned Symbol Descriptions 17

2 Canned Symbol Descriptions

For many applications, the exact structure of the symbols that must be recognized is not
important or the problem description specifies that the symbols should be the same as the
symbols used in some other situation (e.g. identifiers might be specified to use the same
format as C identifiers). To cover this common situation, Eli provides a set of canned
symbol descriptions.

To use a canned description, simply write the canned description’s identifier in a spec-
ification instead of writing a regular expression. For example, the following type-‘gla’ file
tells Eli that the input text will contain C-style identifiers and strings, Ada-style comments,
and Pascal-style integers:

Identifier: C_IDENTIFIER

ADA_COMMENT

String: C_STRING_LIT

Integer: PASCAL_INTEGER

Identifier, String and Integer would appear as non-literal terminal symbols in the
context-free grammar defining the phrase structure of this input text (see Section “How to
describe a context-free grammar” in Syntax Analysis).

The available canned descriptions are defined later in this section. All of these definitions
include a regular expression, and some include auxiliary scanners and/or token processors.
An auxiliary scanner or token processor specified by a canned description can be overridden
by nominating a different one in the specification that names the canned description. For
example, the canned description PASCAL_STRING includes the token processor mkstr (see
Section 1.2.1 [Available scanners], page 8). This token processor stores multiple copies of
the same string in the character storage module. The following specification overrides mkstr
with mkidn, which stores only one copy of each distinct string:

Str: PASCAL_STRING [mkidn]

The auxiliary scanner auxPascalString, included in the canned description, is not over-
ridden by this specification.

The remainder of this section characterizes the canned descriptions that are available in
the Eli library, and also gives their definitions.

2.1 Available Descriptions

Each of the identifiers in the following list is the name of a canned description specifying
the lexical structure of some component of an existing programming language. Here they
are simply characterized by the role they play in that language. A complete definition of
each, consisting of a regular expression, possibly an auxiliary scanner name, and possibly a
token processor name, is given in the next section.

When building a new language, it is a good idea to use canned descriptions for lexical
components: Time is not wasted in deciding on their form, mistakes are not made in their
implementation, and users are familiar with them.

The list also provides canned descriptions for spaces, tabs and newlines. These white
space characters are treated as comments by default. If, however, you define any pattern
that will accept a white space character in its first position, this pattern overrides the



18 Lexical Analysis

default treatment and that white space character will be accepted only in contexts that
are specified explicitly (see Chapter 3 [Spaces Tabs and Newlines], page 21). For example,
suppose that the following pattern were defined and that no other patterns contain spaces:

Separator: $\040+#\040+

In that situation, a space will be accepted only if it is part of a Separator. To treat spaces
that are not part of a Separator as comments, include the canned description SPACES as a
comment specification:

Separator: $\040+#\040+

SPACES

Note that only a white space character that appears at the beginning of a pattern loses
its default interpretation in this way. In this example, neither the tab nor the newline
appeared at the beginning of a pattern and therefore tabs and newlines continue to be
treated as comments.

C_IDENTIFIER, C_INTEGER, C_INT_DENOTATION, C_FLOAT, C_STRING_LIT,

C_CHAR_CONSTANT, C_COMMENT

Identifiers, integer constants, floating point constants, string literals, character
literals, and comments from the C programming language, respectively.

C_INTEGER does not permit the L or U flags, but does correctly accept all other
C integer denotations. By default, it uses c_mkint to convert the denotation
to an internal int value. c_mkint obeys the C rules for determining the radix
of the conversion.

C_INT_DENOTATION accepts all valid ANSI C integer denotations. By default,
it uses mkstr to deliver a unique string table index for every occurrence of a
denotation. This behavior is often overridden by adding [mkidn]:

Integer: C_INT_DENOTATION [mkidn]

In this case, two identical denotations will have the same string table index.

C_IDENTIFIER_ISO

Character sequences obeying the the definition of a C identifier, but accepting
all ISO/IEC 8859-1 letters. Care must be taken in using this description because
these identifiers are not acceptable to most C compilers. That means they
cannot usually be used as (parts of) identifiers in generated code.

PASCAL_IDENTIFIER, PASCAL_INTEGER, PASCAL_REAL, PASCAL_STRING,

PASCAL_COMMENT

Identifiers, integer constants, real constants, string literals, and comments from
the Pascal programming language, respectively.

MODULA2_INTEGER, MODULA2_CHARINT, MODULA2_LITERALDQ, MODULA2_LITERALSQ,

MODULA2_COMMENT

Integer constants, characters specified using character codes, string literals de-
limited by double and single quotes, and comments from the Modula-2 pro-
gramming language, respectively.

MODULA3_COMMENT

Comments from the Modula-3 programming language.



Chapter 2: Canned Symbol Descriptions 19

ADA_IDENTIFIER, ADA_COMMENT

Identifiers and comments from the Ada programming language.

AWK_COMMENT

Comments from the AWK programming language.

SPACES Sequence of one or more spaces.

TAB A single horizontal tab.

NEW_LINE A single newline.

2.2 Definitions of Canned Descriptions

Eli textually replaces a reference to a canned description with its definition. If a user nomi-
nates an auxiliary scanner and/or a token processor for a canned description, that overrides
the corresponding nomination appearing in the definition of the canned description.

The following is an alphabetized list of the canned descriptions available in the Eli
library, with their definitions. Use this list as a formal definition, and as an example for
constructing specifications. (C_FLOAT and PASCAL_REAL have definitions that are too long
to fit on one line of this document. Each is, however, a single line in the specification file.)

ADA_COMMENT

$-- (auxEOL)

ADA_IDENTIFIER

$[a-zA-Z](_?[a-zA-Z0-9])* [mkidn]

AWK_COMMENT

$# (auxEOL)

C_COMMENT

$"/*" (auxCComment)

C_CHAR_CONSTANT

$’ (auxCChar) [c_mkchar]

C_FLOAT $((([0-9]+\.[0-9]*|\.[0-9]+)((e|E)(\+|-)?[0-9]+)?)| ([0-

9]+(e|E)(\+|-)?[0-9]+))[fFlL]? [mkstr]

C_IDENTIFIER

$[a-zA-Z_][a-zA-Z_0-9]* [mkidn]

C_INTEGER

$([0-9]+|0[xX][0-9a-fA-F]*) [c_mkint]

C_INT_DENOTATION

$([1-9][0-9]*|0[0-7]*|0[xX][0-9a-fA-F]+)([uU][lL]?|[lL][uU]?)?

[mkstr]

C_STRING_LIT

$\" (auxCString) [mkstr]

MODULA_INTEGER

$[0-9][0-9A-Fa-f]*[BCH]? [modula_mkint]



20 Lexical Analysis

MODULA2_COMMENT, MODULA3_COMMENT

$\(\* (auxM3Comment)

MODULA2_CHARINT

$[0-9][0-9A-Fa-f]*C [modula_mkint]

MODULA2_INTEGER

$[0-9][0-9A-Fa-f]*[BH]? [modula_mkint]

MODULA2_LITERALDQ

$\" (auxM2String) [mkstr]

MODULA2_LITERALSQ

$\’ (auxM2String) [mkstr]

PASCAL_COMMENT

$"{"|"(*" (auxPascalComment)

PASCAL_IDENTIFIER

$[a-zA-Z][a-zA-Z0-9]* [mkidn]

PASCAL_INTEGER

$[0-9]+ [mkint]

PASCAL_REAL

$(([0-9]+\.[0-9]+)((e|E)(\+|-)?[0-9]+)?)|([0-9]+(e|E)(\+|-)?[0-

9]+) [mkstr]

PASCAL_STRING

$’ (auxPascalString) [mkstr]

SPACES $\040+

TAB $\t (auxTab)

NEW_LINE $[\r\n] (auxNewLine)



Chapter 3: Spaces, Tabs and Newlines 21

3 Spaces, Tabs and Newlines

An Eli-generated processor examines its input text sequentially, recognizing character se-
quences in the order in which they appear. At each point it matches the longest possible
sequence, classifies that sequence, and then begins anew with the next character. If the first
character of a sequence is a space, tab or newline then the default behavior is to classify
the sequence consisting of that character and all succeeding spaces, tabs and newlines as a
comment. This behavior is consistent with the definitions of most programming languages,
and is reasonable in a large fraction of text processing tasks.

Even though tabs and newlines are considered comments by default, some processing
is needed to account for their effect on the source text position. Eli-generated processors
define a two-dimensional coordinate system (line number and column index), which they
use to link error reports to the source text (see Section “Source Text Coordinates and Error
Reporting” in Library Reference Manual).

White space may be significant in two situations:

1. Within a character sequence, such as spaces in a string

2. On its own, such as line boundaries in a type-‘gla’ file

Appropriate white space may be specified as part of the description of a complete character
sequence (provided that it is not at the beginning) without disrupting the default behavior.
(Coordinate processing for tabs and newlines must be provided if they are allowed within
the sequence.) The default behavior is overridden, however, by any specification of white
space on its own or at the beginning of another character sequence. Overriding is specific
to the white space character used: a specification of new behavior for a space overrides the
default behavior for a space, but not the default behavior for a tab or newline.

The following sections explain how coordinate processing is provided for newlines and
tabs, and how to re-establish default behavior of white space on its own when white space
can occur at the beginning of another character sequence.

3.1 Maintaining the Source Text Coordinates

The raw data for determining coordinates are two variables, LineNum (an integer variable
exported by the error module, see Section “Source Text Coordinates and Error Reporting”
in Library Reference Manual) and StartLine (a character pointer exported by the lexical
analyzer). The following invariant must be maintained on these variables:

LineNum=Cumulative index of the current line in the input text

(Pointer to current character)-StartLine=index of the current character

in the current line

This invariant must hold whenever the lexical analyzer begins to process a character se-
quence. It may be destroyed during the processing of that sequence, but must be re-
established before processing of the next character sequence begins.

LineNum is initially 1, and must be incremented each time the lexical analyzer advances
beyond a newline character in the input text. At the beginning of each line, StartLine
must be set to point to the character position preceding the first character of that line.
As the current character pointer is advanced, the condition on StartLine is maintained
automatically unless the character pointer advances over a tab character.



22 Lexical Analysis

A tab character in the input text represents one or more spaces, depending upon its
position relative to the next tab stop, but it occupies only one character position. If the
tab represents n spaces, n-1 must be subtracted from StartLine to maintain the invariant.

Because the value of n depends upon the index of the current character and the settings of
the tab stops in the line, Eli provides an operation TABSIZE(i) (defined in file ‘tabsize.h’)
to compute it. The argument i is the index in the current line of the character position
beyond that containing the tab, and the result is the number of spaces that must be added
to reach the next tab stop.

Suppose that p is a pointer to the current input character. Here is a code sequence that
maintains the condition on StartLine when a tab is encountered:

#include "tabsize.h"

...

if ((*p++) == ’\t’) StartLine -= TABSIZE(p - StartLine);

...

TABSIZE defines the positions of the tab stops. The default implementation provides tab
stops every 8 character positions. A user changes this default by supplying a new version
of the Eli library routine TabSize. The source code for the library version of this routine
can be obtained by making the following request:

-> $elipkg/gla/tabsize.c > MyTabSize.c

After modifying the routine appropriately, add the name MyTabSize.c to your type-‘specs’
file.

The coordinate invariant is maintained automatically if no patterns matching tabs or
newline characters are defined, and no auxiliary scanners that advance over tabs or newline
characters are provided by the user. If such patterns or scanners are needed, then the user
must define them in such a way that they maintain the coordinate invariant.

Three auxiliary scanners (coordAdjust, auxTab and auxNewLine) are available to main-
tain the coordinate invariant for a regular expression that matches tabs or newline characters
(see Section 1.2.1 [Available scanners], page 8). While these auxiliary scanners could be
invoked by user-defined auxiliary scanners that advance over tabs or newline characters, it
is often simpler to include the appropriate code to maintain the coordinate invariant.

For an example of the use of code in an auxiliary scanner to maintain the coordinate
invariant, see the library version of auxNUL.

3.2 Restoring the Default Behavior for White Space

When a pattern beginning with a space, tab or newline character overrides the default
behavior for that character, the character will only be accepted as part of an explicit pattern.
The default behavior can be restored by using one of the canned descriptions SPACES, TAB
or NEW_LINE respectively (see Section 2.1 [Available Descriptions], page 17):

Define: $\040+define

SPACES

Here the pattern for Define overrides the default behavior for space characters. If this were
the only specification, spaces in the input text would only be accepted if they occurred im-
mediately before the character sequence define. By adding the canned description SPACES,
and classifying the sequences it matches as comments, the default behavior is restored.



Chapter 3: Spaces, Tabs and Newlines 23

Note that this specification is ambiguous: A sequence of spaces followed by define could
either match the Define pattern or the spaces alone could be classified as the comment
specified by SPACES. The principle of the longest match guarantees that in this case the
sequence will be classified as Define (see Section 1.1.4 [Ambiguity], page 7).

3.3 Making White Space Illegal

When white space is illegal at the beginning of a pattern, the default treatment of white
space must be overridden with an explicit comment pattern. Because the sequence is speci-
fied to be a comment, nothing will be returned to the parser. A token processor like lexerr
can be used to report the error:

SPACES [lexerr]

The canned descriptions SPACES, TAB and NEW_LINE should be used as patterns in such
specifications because they handle all of the coordinate updating (see Section 3.1 [Main-
taining the source text coordinates], page 21).





Chapter 4: Literal Symbols 25

4 Literal Symbols

If the generated processor includes a parser (see Syntactic Analysis), then Eli will extract
the descriptions of any literal terminal symbols from the context-free grammar defining
that parser and add them to the specifications provided by type-‘gla’ files. For example,
consider the following context-free grammar:

Program: Expression .

Expression: Evaluation / Binding .

Evaluation:

Constant / BoundVariable /

’(’ Expression ’+’ Expression ’)’ /

’(’ Expression ’*’ Expression ’)’ .

Binding: ’let’ BoundVariable ’=’ Evaluation ’in’ Expression .

This grammar has nine terminal symbols. Two (Constant and BoundVariable) are given
by identifiers, and the other seven ((, ), +, *, let, = and in) are given by literals.

Only the character sequences to be classified as Constant or BoundVariable, and those
to be classified as comments, need be defined by type-‘gla’ files. Descriptions of the symbols
given as literals will be automatically extracted from the grammar by Eli. Thus the lexical
analyzer for this language might be described by a single type-‘gla’ file containing the
following:

Constant: PASCAL_INTEGER

BoundVariable: PASCAL_IDENTIFIER

PASCAL_COMMENT

4.1 Overriding the Default Treatment of Literal Symbols

By default, a literal terminal symbol specified in a context-free grammar supplied to Eli will
be recognized as though it had been specified by the appropriate regular expression. Thus
the literal symbols ’+’ and ’let’ will be recognized as though the following specifications
had been given by the user:

Plus: $\+

Let: $let

(Here Plus and Let are arbitrary identifiers describing the initial classifications of the literal
symbols. No such identifiers are actually supplied by Eli, but the literal symbols are not
initially classified as comments.)

In some situations it is useful to carry out more complex operations at the time the
literal symbol is recognized. In this case, the user must do two things:

1. Mark the literal symbol as being a special case.

2. Provide a specification for the literal symbol.

As a concrete example, suppose that %% were used as a major separator in the input text
and could appear either once or twice. Assume that the first occurrence is required, and
the second is optional. All text following the second occurrence is to be ignored.

One approach to this problem would be to count the number of occurrences of the literal
symbol %%, advancing to the end of the input text after the second. This could be done



26 Lexical Analysis

by an auxiliary scanner (see Section 1.2 [Auxiliary Scanners], page 8) that either returns
a pointer to the character following the %% or a pointer to the ASCII NUL terminating
the input text, and a token processor (see Section 1.3 [Token Processors], page 12) that
reclassifies the second occurrence of %% as a comment. The grammar would specify only the
required first occurrence of %%.

In order to mark the literal symbol %% as a special case that should not receive the
default treatment, the user must supply a type-‘delit’ file specifying that symbol as a
regular expression. The entry in the type-‘delit’ file also needs to define an identifier to
represent the classification:

$%% PercentPercent

Each line of a type-‘delit’ file consists of a regular expression and an identifier, sepa-
rated by white space. The regular expression must describe a literal symbol appearing in
a context-free grammar supplied to Eli. That literal symbol will not be incorporated au-
tomatically into the generated lexical analyzer; it must be specified explicitly by the user.
The identifier will be given the appropriate value by an Eli-generated #define directive in
file ‘litcode.h’.

In our example, %% could be specified by the following line of a type-‘gla’ file:

$%% (SkipOrNot) [CommentOrNot]

Initially, the separator will be classed as a comment because there is no identifier preceding
the regular expression. SkipOrNot will use a state variable to decide whether or not to skip
text (see Section 1.2.2 [Building scanners], page 12), while CommentOrNot will use the same
state variable to decide whether or not to change the classification to PercentPercent (see
Section 1.3.2 [Building Processors], page 14):

#include <fcntl.h>

#include "source.h"

#include "litcode.h"

static int Second = 0;

char *

SkipOrNot(char *start, int length)

{ if (!Second) return start + length;

(void)close(finlBuf());

initBuf("/dev/null", open("/dev/null", O_RDONLY));

return TEXTSTART;

}

void

CommentOrNot(char *start, int length, int *syncode, int *intrinsic)

{ if (!Second) { Second++; *syncode = PercentPercent; }

}

The remainder of the text is skipped by closing the current input file and opening an empty
file to read (see Section “Text Input” in Library Reference Manual). Since %% is initially
classified as a comment, its classification must be changed only on the first occurrence.



Chapter 4: Literal Symbols 27

File ‘fcntl.h’ defines open and O_RDONLY, ‘source.h’ defines initBuf, finlBuf and
TEXTSTART, and ‘litcode.h’ defines PercentPercent.

4.2 Using Literal Symbols to Represent Other Things

In some cases the phrase structure of a language depends upon layout cues rather than
visible character sequences. For example, indentation is used in Occam2 to indicate block
structure: If the first non-blank character of a line is indented further than the first non-
blank character of the line preceding it, then the new line begins a new block. If the first
non-blank character of a line is not indented as far as the first non-blank character of the
line preceding it, then the old line ends one or more blocks depending on the difference in
indentation. If the first non-blank characters of two successive lines are indented by the
same amount, then the lines simply contain adjacent statements of the same block.

Layout cues can be represented by literal symbols in the context-free grammar that
describes the phrase structure. The processing needed to recognize the layout cues can
then be described in any convenient manner, and the sequence of white space characters
implementing those cues can be classified as the appropriate literal symbol.

Suppose that the beginning of a block is represented in the Occam2 grammar by the
literal symbol ’{’, the statement separator by ’;’, and the end of a block by ’}’. In the
input text, blocks and statement separators are defined by layout cues as described above.
A type-‘delit’ file marks the literal symbols as requiring special recognition and associates
an identifier with each:

$\{ Initiate

$; Separate

$\} Terminate

Indentation can be specified as white space following a new line:

$\n[\t\040]* [OccamIndent]

The token processor OccamIndent would carry out all of the processing necessary to de-
termine the meaning of the indentation. This processing is complex, involving interactions
with several other components of the generated lexical analyzer (see Section 6.4 [An Exam-
ple of Interface Usage], page 35). It constitutes an operational definition of the meaning of
indentation in Occam2.





Chapter 5: Case Insensitivity 29

5 Case Insensitivity

The default behavior of an Eli-generated lexical analyzer is to treat each ASCII character
as an entity distinct from all other ASCII characters. This behavior is inappropriate for
applications that do not distinguish upper-case letters from lower-case letters in certain
contexts. For example, a Pascal compiler ignores the case of letters in identifiers and
keywords, but distinguishes them in strings. Thus the Pascal identifiers MyId, MYID and
myid are identical but the strings ’MyString’, ’MYSTRING’ and ’mystring’ are different.

Case insensitivity is reflected in the identity of character sequences. In other words, the
character sequences MyId, MYID and myid are considered to be identical character sequences
if and only if the generated processor is insensitive to the case of letters. Two character
sequences are identical as far as the remainder of the processor is concerned if they have the
same classification and their values are equal (see Chapter 1 [Specifications], page 3). Since
the classification and value are determined by the token processor, it is the token processor
that must implement case insensitivity.

Two conditions must be met if a processor is to be insensitive to case:

1. A token processor that maintains a table of character sequences in which all letters are
of one case must be available.

2. The specification of each case-insensitive character sequence must invoke such a token
processor.

5.1 A Case-Insensitive Token Processor

The token processor mkidn maintains a table of character sequences and provides the same
classification and value for identical character sequences. Normally, mkidn treats upper-
case letters and lower-case letters as different characters. This behavior is controlled by an
exported variable, dofold (see Section “Unique Identifier Management” in Library Refer-
ence Manual): When dofold=0 character sequences are entered into the table as they are
specified to mkidn; otherwise all letters in the sequence are converted to upper case before
the sequence is entered into the table.

Although the value of dofold could be altered on the basis of context by user-defined
code, it is normally constant throughout the processor’s execution. To generate a processor
in which dofold=1, specify the parameter +fold in the request (see Section “fold – Make
the Processor Case-Insensitive” in Products and Parameters Reference Manual). If this
parameter is not specified in the request, Eli will produce a processor with dofold=0.

The value set by mkidn is the (unique) index of the transformed character sequence in
the table. Thus if that value is used to retrieve the sequence at a later time, the result will
be the original sequence with all lower-case letters replaced by their upper-case equivalents.

5.2 Making Literal Symbols Case Insensitive

Since literal symbols are recognized exactly as they stand in the grammar, they are case
sensitive by definition. For example, if a grammar for Pascal contains the literal symbol
’begin’ then the generated processor will recognize only the character sequence begin as
an instance of that literal symbol. This behavior could be changed by redefining the literal
symbol as a nonliteral symbol (say) BEGIN, and providing the following specification in a
type-‘gla’ file:



30 Lexical Analysis

BEGIN: $[Bb][Ee][Gg][Ii][Nn] [mkidn]

If the number of literal symbols to be treated as case-insensitive is large, this is a very
tedious and error-prone approach. It also distorts the grammar by converting literal terminal
symbols to non-literal terminal symbols.

To solve this problem, Eli allows the user to specify a set of literal symbols that should
be placed into the table used by mkidn, with their classification codes, at the time the
generated lexical analyzer is loaded. If the +fold parameter is also specified, all lower-case
letters in these symbols will be replaced by their upper-case equivalents before the symbol
is placed into the table. The desired behavior is then obtained by invoking mkidn after
recognizing the appropriate character sequence in the input text.

The set of literal symbols to be placed into the table is specified by giving a sequence of
regular expressions in a type-‘gla’ file, and then deriving the :kwd product from that file
(see Section “kwd – Recognize Specified Literals as Identifiers” in Products and Parameters
Reference Manual). The regular expressions describe the form of the literal symbols in the
grammar, not the input character sequences to be recognized.

Suppose, for example, that a Pascal grammar specified all keywords as literal symbols
made up of lower-case letters:

Statement:

...

’while’ Expression ’do’ Statement /

...

A type-‘gla’ file describing the form these symbols take in the grammar would consist of
the single line $[a-z]+. If the name of that file was ‘PascalKey.gla’ then the user could
tell Eli to initialize mkidn’s table with all of the keywords by including the following line in
a type-‘specs’ file:

PascalKey.gla :kwd

In Pascal, keywords have the form of identifiers in the input text. Therefore the
canned description PASCAL_IDENTIFIER suffices to recognize both identifiers and keywords.
PASCAL_IDENTIFIER invokes mkidn to obtain the classification and value of the sequence
recognized by the regular expression $[a-zA-Z][a-zA-Z0-9]*. Since mkidn’s table has
been initialized with the character sequences for the literal keyword symbols, and their
classifications, they will be appropriately recognized.

The :kwd product and the +fold parameter are independent of one another. Thus, in
order to make the generated lexical analyzer accept Pascal keywords with arbitrary case
the user must both provide the :kwd specification and derive with the +fold parameter.



Chapter 6: The Generated Lexical Analyzer Module 31

6 The Generated Lexical Analyzer Module

This chapter discusses the generated lexical analyzer module, its interface, and its relation-
ship to other modules in the generated processor. An understanding of the material here is
not necessary for normal use of the lexical analyzer.

There are some special circumstances in which it is necessary to change the interactions
between the lexical analyzer and its environment. For example, there is a mismatch between
the lexical analyzer and the source code input module of a FORTRAN 90 compiler: The
unit of input text dealt with by the source code module is the line, the unit dealt with
by the lexical analyzer is the statement, and there is no relationship between lines and
statements. One line may contain many statements, or one statement may be spread over
many lines. This mismatch problem is solved by requiring the two modules to interact via
a buffer, and managing that buffer so that it contains both an integral number of lines and
an integral number of statements. Because the lexical analyzer normally works directly in
the source module’s buffer, that solution requires a change in the relationship between the
lexical analyzer and its environment.

The interaction between the lexical analyzer and its environment is governed by the
following interface:

#include "gla.h"

/* Entities exported by the lexical analyzer module

* NORETURN (constant) Classification of a comment

* ResetScan (variable) Flag causing scan pointer reset

* TokenStart (variable) Address of first classified character

* TokenEnd (variable) Address of first unclassified character

* StartLine (variable) Column index = (TokenEnd - StartLine)

* glalex (operation) Classify the next character sequence

***/

There are three distinct aspects of the relationship between the lexical analyzer and its
environment, and each is dealt with in one section of this chapter. First we consider how the
lexical analyzer selects the character sequence to be scanned, then we see how the lexical
analyzer’s attention can be switched, and finally how the classification results are reported.

6.1 Interaction Between the Lexical Analyzer and the Text

There is no internal storage for text in the lexical analyzer module. Instead, TokenEnd is set
to point to arbitrary text storage. (Normally the pointer is to the source buffer, see Section
“Text Input” in Library Reference Manual.) The text pointed to must be an arbitrary
sequence of characters, the last of which is an ASCII NUL.

At the beginning of a scan, TokenEnd points to the beginning of the string on which a
sequence is to be classified. The lexical analyzer tests that string against its set of regular
expressions, finding the longest sequence that begins with the first character and matches
one of the regular expressions.

If the regular expression matched is associated with an auxiliary scanner then that aux-
iliary scanner is invoked with the matched sequence (see Section 1.2.2 [Building scanners],
page 12). The auxiliary scanner returns a pointer to the first character that should not



32 Lexical Analysis

be considered part of the character sequence being matched, and that pointer becomes the
value of TokenEnd. TokenStart is set to point to the first character of the string.

When no initial character sequence matches any of the regular expressions an error
report is issued, TokenEnd is advanced by one position (thus discarding the first character
of the string), and the process is restarted. If the string is initially empty, no attempt is
made to match any regular expressions. Instead, the auxiliary scanner auxNUL is invoked
immediately. If this auxiliary scanner returns a pointer to an empty string then the auxiliary
scanner auxEOF is invoked immediately. Finally, if auxEOF returns a pointer to an empty
string then the Token processor EndOfText is invoked immediately. (If either auxNUL or
auxEOF returns a pointer to a non-empty string, scanning begins on this string as though
TokenEnd had pointed to it initially.)

TokenStart addresses a sequence of length TokenEnd-TokenStart when a token pro-
cessor is invoked (see Section 1.3 [Building Processors], page 12). Because TokenStart and
TokenEnd are exported variables, the token processor may change them if that is appro-
priate. All memory locations below the location pointed to by TokenStart are undefined
in the fullest sense of the word: Their contents are unknown, and they may not even ex-
ist. Memory locations beginning with the one pointed to by TokenStart, up to but not
including the one pointed to by TokenEnd, are known to contain a sequence of non-NUL
characters. TokenEnd points to a sequence of characters, the last of which is an ASCII NUL.
If the token processor modifies the contents of TokenStart or TokenEnd, it must ensure that
these conditions hold after the modification.

6.2 Resetting the Scan Pointer

If the exported variable ResetScan is non-zero when the operation glalex is invoked, the
lexical analyzer’s first action is to execute the macro SCANPTR. SCANPTR guarantees that
TokenEnd addresses the string to be scanned. If ResetScan is zero when glalex is invoked,
TokenEnd is assumed to address that string already. ResetScan is statically initialized to
1, meaning that SCANPTR will be executed on the first invocation of glalex.

In the distributed system, SCANPTR sets TokenEnd to point to the first character of the
source module’s text buffer. Since this is also the first character of a line, StartLine must
also be set (see Section 3.1 [Maintaining the Source Text Coordinates], page 21):

#define SCANPTR { TokenEnd = TEXTSTART; StartLine = TokenEnd - 1; }

See Section “Text Input” in Library Reference Manual. This implementation can be changed
by supplying a file ‘scanops.h’, containing a new definition of SCANPTR, as one of your
specification files.

ResetScan is set to zero after SCANPTR has been executed. Normally, it will never
again have the value 1. Thus SCANPTR will not be executed on any subsequent invocation
of glalex. Periodic refilling of the source module’s text buffer and associated re-setting
of TokenEnd is handled by auxNUL when the lexical analyzer detects that the string is
exhausted. More complex behavior, using ResetScan to force resets at arbitrary points, is
always possible via token processors or other clients.

TokenEnd is statically initialized to 0. Once scanning has begun, TokenEnd should always
point to a location in the source buffer (see Section “Text Input” in Library Reference
Manual). Thus SCANPTR can normally distinguish between initialization and arbitrary re-



Chapter 6: The Generated Lexical Analyzer Module 33

setting by testing TokenEnd. (If user code sets TokenEnd to 0, of course, this test may not
be valid.)

6.3 The Classification Operation

The classification operation glalex is invoked with a pointer to an integer variable that
may be set to the value representing the classified sequence. An integer result specifying
the classification is returned by glalex, and the coordinates of the first character of the
sequence are stored in the error module’s exported variable curpos (see Section “Source
Text Coordinates and Error Reporting” in Library Reference Manual).

There are three points at which these interactions can be altered:

1. Setting coordinate values

2. Deciding on a continuation after a classification

3. Returning a classification

All of these alterations are made by supplying macro definitions in a specification file called
‘scanops.h’. The remainder of this section defines the macro interfaces and gives the default
implementations.

6.3.1 Setting coordinate values

The coordinates of the first character of a sequence are set by the macro SETCOORD. Its
default implementation uses the standard coordinate invariant (see Section 3.1 [Maintaining
the Source Text Coordinates], page 21):

/* Set the coordinates of the current token

* On entry-

* LineNum=index of the current line in the entire source text

* p=index of the current column in the entire source line

* On exit-

* curpos has been updated to contain the current position as its

* left coordinate

*/

#define SETCOORD(p) { LineOf(curpos) = LineNum; ColOf(curpos) = (p); }

When execution monitoring (see Section “Monitoring” in Monitoring) is in effect, more
care must be taken. In addition to the above, SETCOORDmust also set the cumulative column
position, which is the column position within the overall input stream (as opposed to just
the current input file). Ordinarily the two column positions will be the same, so the default
implementation of SETCOORD for monitoring is:

#define SETCOORD(p) { LineOf(curpos) = LineNum; \

ColOf(curpos) = CumColOf(curpos) = (p); }

When monitoring, it is also necessary to set the coordinates of the first character beyond
the sequence. This is handled by the macro SETENDCOORD:

/* Set the coordinates of the end of the current token

* On entry-

* LineNum=index of the current line in the entire source text

* p=index of the current column in the entire source line

* On exit-



34 Lexical Analysis

* curpos has been updated to contain the current position as its

* right coordinate

*/

#ifndef SETENDCOORD

#define SETENDCOORD(p) { RLineOf(curpos) = LineNum; \

RColOf(curpos) = RCumColOf(curpos) = (p); }

#endif

6.3.2 Deciding on a continuation after a classification

Classification is complete after the regular expression has been matched, any specified aux-
iliary scanner invoked, and any specified token processor invoked. At this point, one of
three distinct actions is possible:

RETURN v Terminate the invocation of glalex, returning the value v as the classification.

goto rescan

Start a new scan at the character addressed by TokenEnd, without changing
the coordinate value.

continue Start a new scan at the character addressed by TokenEnd, resetting the coordi-
nates to the coordinates of that character.

WRAPUP is the macro responsible for deciding among these possibilities. When it is
executed, TokenEnd addresses the first character beyond the classified sequence and extcode

holds the classification code. Here is the default implementation:

#define WRAPUP { if (extcode != NORETURN) RETURN extcode; }

If WRAPUP does not transfer control, the result is the continue action. Thus the default
implementation of WRAPUP terminates the invocation of glalex if the current character
sequence is not classified as a comment (extcode != NORETURN), and starts a new scan at
the next character if the current character sequence is classified as a comment.

If execution monitoring is in effect, the classification event must be reported in addition
to selecting a continuation:

#define WRAPUPMONITOR { \

if (extcode != NORETURN) { \

char save = *TokenEnd; \

*TokenEnd = ’\0’; \

generate_token("token", LineOf(curpos), ColOf(curpos), \

CumColOf(curpos), RLineOf(curpos), RColOf(curpos), \

RCumColOf(curpos), TokenStart, TokenEnd - TokenStart, \

*v, extcode); \

*TokenEnd = save; \

} \

}

WRAPUPMONITOR is invoked instead of WRAPUP if execution monitoring is in effect.

6.3.3 Returning a classification

Once the decision has been made to terminate the glalex operation and report the classi-
fication, it is possible to carry out arbitrary operations in addition to returning the classifi-



Chapter 6: The Generated Lexical Analyzer Module 35

cation code. For example, execution monitoring requires that this event be reported. Here
is the default implementation:

#ifdef MONITOR

#define RETURN(v) { generate_leave("lexical"); return v; }

#else

#define RETURN(v) { return v; }

#endif

6.4 An Example of Interface Usage

Recognition of Occam2 block structure from indentation is an example of how a token
processor might use the lexical analyzer interface (see Section 4.2 [Using Literal Symbols
to Represent Other Things], page 27). The token processor OccamIndent is invoked after a
newline character (possibly followed by spaces and/or tabs) has been recognized:

#include "err.h"

#include "gla.h"

#include "source.h"

#include "litcode.h"

extern char *auxNUL();

extern char *coordAdjust();

#define MAXNEST 50

static int IndentStack[MAXNEST] = {1};

static int *Current = IndentStack;

void

OccamIndent(char *start, int length, int *syncode, int *intrinsic)

{ if (start[length] == ’\0’) {

start = auxNUL(start, length);

if (start[length] != ’\0’) { TokenEnd = start; return; };

TokenEnd = start + length;

}

if (*TokenEnd == ’\0’ && Current == IndentStack) return;

{ char *OldStart = StartLine;

int OldLine = LineNum, Position;

(void)coordAdjust(start, length); Position = TokenEnd-StartLine;

if (*Current == Position) *syncode = Separate;

else if (*Current < Position) {

*syncode = Initiate;

if (Current == IndentStack + MAXNEST)

message(DEADLY, "Nesting depth exceeded", 0, &curpos);

*++Current = Position;

} else {



36 Lexical Analysis

*syncode = Terminate; Current--;

LineNum = OldLine; StartLine = OldStart; TokenEnd = start;

}

}

}

Since the source buffer is guaranteed only to hold an integral number of lines (see Section
“Text Input” in Library Reference Manual), OccamIndent must first refill the buffer if
necessary. The library routine auxNUL carries out this task, returning a pointer to the
character sequence passed to it (see Section 1.2.1 [Available scanners], page 8). Remember
that the character sequence may be moved in the process of refilling the buffer, and therefore
it is vital to reset both start and TokenEnd after the operation.

If auxNUL is invoked and adds characters to the buffer, then those characters might be
white space that should have been part of the original pattern. In this case OccamIndent can
return, having set TokenEnd to point to the first character of the original sequence. Since
the sequence was initially classified as a comment (because the specification did not begin
with an identifier followed by a colon, see Section 4.2 [Using Literal Symbols to Represent
Other Things], page 27), the overall effect will be to re-scan the newline and the text now
following it.

If auxNUL is invoked but does not add characters to the buffer, then the newline originally
matched is the last character of the file. TokenEnd should be set to point to the character
following the newline.

When the end of the file has been reached, and no blocks remain unterminated, then
the newline character has no meaning. By returning under these conditions, OccamIndent
classifies the newline as a comment. Otherwise, the character sequence matched by the
pattern must be interpreted on the basis of the indentation it represents.

Because a single character sequence may terminate any number of blocks, it may be
necessary to interpret it as a sequence of terminators. The easiest way to do this is to keep
re-scanning the same sequence, returning one terminator each time, until all of the relevant
blocks have been terminated. In order to make that possible, OccamIndent must save the
current values of the pointer from which column indexes are determined (StartLine) and
the cumulative line number (LineNum).

The pattern with which OccamIndent is associated will match a character sequence
beginning with a newline and containing an arbitrary sequence of spaces and tabs. To de-
termine the column index of the first character following this sequence, apply coordAdjust

to it (see Section 1.2.1 [Available scanners], page 8). That auxiliary scanner leaves the
character sequence unchanged, but re-establishes the invariant on LineNum and StartLine

(see Section 3.1 [Maintaining the Source Text Coordinates], page 21). After the invariant
is re-established, the column index can be computed.

Current points to the element of IndentStack containing the column index of the first
character of a line belonging to the current block. (If no block has been opened, the value is
1.) When the column index of the character following the initial white space is equal to this
value, that white space should be classified as a separator. Otherwise, if the column index
shows an indentation then the white space should be classified as an initiator and the new
column position should be pushed onto the stack. Stack overflow is a deadly error, making
further processing impossible (see Section “Source Text Coordinates and Error Reporting”



Chapter 6: The Generated Lexical Analyzer Module 37

in Library Reference Manual). Finally, if the column index shows an exdentation then the
white space should be classified as a terminator and the column position for the terminated
block deleted from the stack.

When a newline terminates a block, it must be re-scanned and interpreted in the context
of the text surrounding the terminated block. Therefore in this case StartLine and LineNum

are restored to the values they had before coordAdjust was invoked, and TokenStart is set
to point to the newline character at the start of the sequence. Thus the next invocation of
the lexical analyzer will again recognize the sequence and invoke OccamIndent to interpret
it.





Index 39

Index

*
* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

+
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

-
- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

?
? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

[
[ ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

^
^ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

\
\040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 22
\040+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
\b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
\t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

|
| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
{ } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

A
ADA_COMMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 19
ADA_IDENTIFIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
alternation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
auxCChar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 19
auxCComment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 19
auxCString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 19
auxEOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
auxEOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 10, 19
auxiliary scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
auxM2String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
auxM2StringDQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
auxM2StringSQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
auxM3Comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 19

auxNewLine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
auxNoEOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
auxNUL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
auxPascalComment . . . . . . . . . . . . . . . . . . . . . . . . . 11, 20
auxPascalString . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 20
auxTab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 20
AWK_COMMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B
backslash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
built-in symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C
C_CHAR_CONSTANT . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 19
C_COMMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 19
C_FLOAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 19
C_IDENTIFIER . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 18, 19
C_IDENTIFIER_ISO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
C_INT_DENOTATION . . . . . . . . . . . . . . . . . . . . . . . . . 18, 19
C_INTEGER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 19
c_mkchar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 19
c_mkint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 19
c_mkstr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
C_STRING_LIT . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 18, 19
canned symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
coordAdjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Ctext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
cumulative column . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

D
dash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
default behavior for white space . . . . . . . . . . . . 21
dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
double quote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

E
encodings of non-literals . . . . . . . . . . . . . . . . . . . 14
EndOfText . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Errors, lexical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

G
glalex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3



40 Lexical Analysis

L
lexerr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Lexical errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
LineNum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
longest match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

M
minus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
mkidn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 17, 19, 29
mkint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12, 14
mkstr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 19, 20
MODULA_INTEGER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
modula_mkint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 20
MODULA2_CHARINT . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 20
MODULA2_COMMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 19
MODULA2_INTEGER . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 20
MODULA2_LITERALDQ . . . . . . . . . . . . . . . . . . . . . . . . 18, 20
MODULA2_LITERALSQ . . . . . . . . . . . . . . . . . . . . . . . . 18, 20
MODULA3_COMMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 19
MONITOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

N
NEW_LINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 20
newline defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
NORETURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15, 31

O
one or more . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
operator character . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
optional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
ordering of specifications . . . . . . . . . . . . . . . . . . . 7

P
PASCAL_COMMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 20
PASCAL_IDENTIFIER . . . . . . . . . . . . . . . . . . . . . . . . 18, 20
PASCAL_INTEGER . . . . . . . . . . . . . . . . . . . . . . . . 17, 18, 20
PASCAL_REAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18, 20
PASCAL_STRING . . . . . . . . . . . . . . . . . . . . . . . . . 17, 18, 20
period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
predefined symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Q
quote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

R
range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
regular expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
repetition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Reporting a lexical error . . . . . . . . . . . . . . . . . . 23
ResetScan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
RETURN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

S
scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SCANPTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
SETCOORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
SETENDCOORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
space defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
SPACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 22
specification ordering . . . . . . . . . . . . . . . . . . . . . . . 7
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
StartLine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 31

T
TAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
tab defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
termcode.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
text character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
TokenEnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
TokenStart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

W
white space defaults . . . . . . . . . . . . . . . . . . . . . . . . . 21
WRAPUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
WRAPUPMONITOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Z
zero or more . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
zero or one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6


	Specifications
	Regular Expressions
	Matching operator characters
	Character classes
	Building complex regular expressions
	What happens if the specification is ambiguous?

	Auxiliary Scanners
	Available scanners
	Building scanners

	Token Processors
	Available processors
	Building processors


	Canned Symbol Descriptions
	Available Descriptions
	Definitions of Canned Descriptions

	Spaces, Tabs and Newlines
	Maintaining the Source Text Coordinates
	Restoring the Default Behavior for White Space
	Making White Space Illegal

	Literal Symbols
	Overriding the Default Treatment of Literal Symbols
	Using Literal Symbols to Represent Other Things

	Case Insensitivity
	A Case-Insensitive Token Processor
	Making Literal Symbols Case Insensitive

	The Generated Lexical Analyzer Module
	Interaction Between the Lexical Analyzer and the Text
	Resetting the Scan Pointer
	The Classification Operation
	Setting coordinate values
	Deciding on a continuation after a classification
	Returning a classification

	An Example of Interface Usage

	Index

