Introduction of specification modules

Uwe Kastens

University of Paderborn
D-33098 Paderborn
FRG

$Revision: 1.5 $

Table of Contents

1 Running Example...............................

2 Instantiation and Use of Modules.............

Eli provides a library of specification modules. Each module contains a complete set of
specifications that solve a single common task in language implementation. If such a task
is identified in the design of an application specification, the module is simply added to the
application specification and used there. Most modules solve a rather small task. They can
be flexibly combined to solve more complex problems.

The first section introduces an example that is referred to in the other sections to explain
the use of modules in the context of a language implementation task. The second section
explains how modules are obtained from the library and are related to users’ specifications.
The remaining sections describe sublibraries for a certain problem class each.

The section Section “Name Analysis Library” in Name Analysis Library, is a quick
reference that helps to migrate specifications using modules of previous versions of this
library.

This document may be used according to different strategies: In order to become familiar
with problem solving by using library modules one can start with the running example of
section Chapter 1 [Example], page 3, and extend it as described in the subsequent chapters.
One can also start with a particular problem in mind and then search the corresponding
chapter for a module that could be used to solve it. The document can also be used as
a reference manual for the library modules. In any case it is recommended to read the
introduction of a chapter before using one of its modules.

The modules solve their task by providing specification fragments to one or more Eli
tools: Some are simply a C module, others contain .1lido, .pdl, .ptg, or references to other
library modules. The modules are designed such that as few assumptions as possible have
to hold in the user’s part of the specification where they are applied. E.g. .1ido fragments
supplied by library modules are mapped to the particular grammar of the user’s specification
by the inheritance construct of LIDO. Modules described in the Section “Abstract Data
Types” in Abstract data types to be used in specifications, section may also be used directly
in C modules or in stand-alone C programs.

Most modules in the library are generic, i.e. the names used in a module can be modified
by its instantiation. This facility allows to use the same module for different purposes,
e.g. a counter for variables and another for procedures, or specify the element type of a
generic list type implementation. Instantiations also control the combination of modules,
e.g. association of properties to procedures and to variables which might have different name
spaces.

This document describes the task that each module solves, its interface, and how it can be
applied in a user’s specification. The descriptions are illustrated using a running example
introduced in the next section (see Chapter 1 [Example|, page 3). Complete executable
specifications for that running example are available in the directories $/Name/Examples and
in $/Type/Examples. In general that information should be sufficient to use the modules.
A look at the module’s text may help in special cases.

Users are encouraged to apply this design technique of decomposition into specification
modules to their application as well. The structure of complex designs and their maintain-
ability can thus be improved. The resulting modules may be reused in other applications.
The techniques needed to instantiate user developed modules are described in Chapter 2
[Instantiation]|, page 5.

2 Introduction of specification modules

This library will be extended by adding further modules that solve common tasks. Hence,
users are encouraged to contact their Eli distributor if a module for a task that might be
of general interest is missing, or if a solution for such a task can be contributed.

Chapter 1: Running Example 3

1 Running Example

In this section we introduce an example for a language implementation task. It is used in
the descriptions of the library modules of this document wherever possible. It shall serve to
demonstrate the use of the modules in the context of a complete specification. Of course,
such examples can only show certain aspects of the modules. They can not demonstrate
their complete functionality and the variety and flexibility of possible applications.

Although the example is taken from the area of programming language implementa-
tion, similar tasks are to be solved if languages for other purposes than programming, or
programming languages with other characteristics are implemented.

Complete executable specifications for this running example are available in the direc-
tories $/Name/Examples and in $/Type/Examples

For the purpose of this example we assume that a small artificial programming language
is to be implemented. The basic constructs of the language are nested blocks, declarations
of variables and of names for values, assignment statements and expressions as specified by
the following concrete grammar.

The overall program structure is given by

Program: Source.

Source: Block.

Block: Compound.

Compound: ’begin’ Declaration* Statement* ’end’.

Variable declarations specify the types of the declared variables:

Declaration: ’var’ 0ObjDecls ’;’.
ObjDecls: ObjDecl // 7,°.
ObjDecl: TypeDenoter Ident.
TypeDenoter: Ident.

For the start of this example there is only a set of predefined type identifiers. In the type
analysis section the language is extended by introduction of further types and denoters for
them.

For the time being there are only three forms of statements:

Statement: Expression ’;’.
Statement: Variable ’=’ Expression ’;’
Statement: Block.

Further statements are added when necessary to explain aspects of module use.

The expression syntax is left incomplete here in order to introduce operators of different
precedence levels (see Section “Operator Identification” in Type analysis tasks). If one
wants to complete this grammar without adding operators one should add the production

Expression: Operand.

The basic operands are

Operand: IntNumber.
Operand: RealNumber.
Operand: Variable.
Variable: Ident.

The non-literal tokens are defined by

4 Introduction of specification modules

Ident: PASCAL_IDENTIFIER
IntNumber: PASCAL_INTEGER
RealNumber: PASCAL_REAL

PASCAL_COMMENT

The above grammar is chosen such that the solution of language implementation tasks of
name analysis, type analysis, and translation by using library modules can be demonstrated.
It is also prepared to demonstrate the combination of different module uses. The grammar
is extended where necessary in the examples of subsequent sections.

Chapter 2: Instantiation and Use of Modules 5

2 Instantiation and Use of Modules

To use a specification module, e.g. the AlgScope module in the Name library, it is instantiated
by the line

$/Name/AlgScope.gnrc :inst

in a .specs file. All component specification files of the module are thus included in the
set of specifications. A derivation

x.specs:allspecs
can be used to inspect all the instantiated files.

The module instance obtained by the instantiation command above provides .1lido sym-
bol computations for a symbol named IdUseEnv, among other specifications.

The above instantiation command is sufficient if only one instantiation of the AlgScope
module is used. Several instantiations of the same module are distinguished by generic
instance names supplied as arguments of the instantiation

$/Name/AlgScope.gnrc +instance=CtrlVar :inst

In this case another instance of the AlgScope module is generated having the instance name
CtrlVar. It may coexist with the unnamed instance created above. The names of its files
and of specified entities (symbols, attributes, etc.) are prefixed by the instance identifier,
e.g. CtrlVarIdUseEnv.

Some modules have a second generic parameter referto. It may specialize the module in
a second dimension on instantiation: The AlgScope module provides compuations for Key
attributes in IdUseEnv contexts that represent applied occurrences of identifiers. In some
situations it may be necessary to compute more than one Key attribute in an IdUseEnv
context (if the identifier is bound in different name spaces). Hence, the referto of the
AlgScope module modifies the names of the Key attributes. If the AlgScope module is
instantiated by

$/Name/AlgScope.gnrc +instance=CtrlVar +referto=Ctrl :inst

it provides computations for the attribute CtrlVarIdUseEnv.CtrlKey, among other com-
putations.

Other modules use the referto parameter for different purposes, e.g. specifying the
element type for a generic stack module.

If any of the two generic parameters instance or referto is omitted, as in the first two
examples, their value is assumed to be the empty string.

If a module is instantiated as described its facilities can be used in certain components of
the user’s specification: Symbol computations as those provided by the AlgScope module
are associated to symbols of the user’s tree grammar by .1lido constructs like

SYMBOL Useldent INHERITS IdUseEnv END;

Note: The symbols provided by modules are CLASS symbols in the sense of LIDO, i.
e. they may not be used directly as tree grammar symbols. INHERITS constructs like the
above are needed to bind their computations to symbols of user’s specification. This means
avoids accidental coincidence between names of tree grammar symbols and of module roles.

Further .1lido specifications may be neccessary to supply information to or obtain in-
formation from the thus inherited computations.

6 Introduction of specification modules

Modules may also provide C functions (directly or via specifications for other tools), e.g.
functions of the environment module in case of the AlgScope module. They may be called
in computations of the user’s .1ido specification, or in user’s C modules if the appropriate
header file is included.

The same instantiation mechanism may be applied to include user defined modules:

/user/Lib/ModName.gnrc:inst
instantiates the module ModName of a user library.

Such a module must contain of at least two files , e.g. /user/Lib/ModName . fw containing
the module’s specifications and /user/Lib/ModName.gnrc. The latter is an executable shell
script that performs the generic module instantiation. It should have the following form:

#!/bin/sh
moddir=‘expr $0 : ’\(.*\)/.*x> \| *.°¢

$1 -e "s/INAME|/$2/g
s/|KEY|/$3/g" "$moddir"/ModName.fw > "$2"ModName.fw

The last two lines use sed to substitute the instance parameter for any occurrence of
INAME| in the file ModName.fw and the referto parameter for any occurrence of |KEY].

	Running Example
	Instantiation and Use of Modules

