
PTG: Pattern-based Text Generator

U. Kastens

University of Paderborn
D-33098 Paderborn

FRG

$Revision: 1.1 $

i

Table of Contents

1 Introduction to PTG . 3

2 Pattern Specifications . 5
2.1 Indexed Insertion Points . 5
2.2 Typed Insertion Points . 6
2.3 Function Call Insertion . 7
2.4 Optional Parts in Patterns . 8

3 Output Functions . 9

4 Some Useful Techniques . 11
4.1 Output of Data Items . 11
4.2 Generating Identifiers . 11
4.3 Output of Sequences . 12

5 A Complete Example . 13
5.1 Source Language Structure . 13
5.2 Program Frame . 14
5.3 Expressions . 15
5.4 Using LIDO CHAINs . 16
5.5 Using LIDO CONSTITUENTS . 17

6 Predefined Entities . 21

7 Influencing PTG Output . 23
7.1 Changing Default Output for Limited Line Length 24

8 Outdated Constructs . 27

9 Syntax of PTG Specifications 29

Index . 31

1

The Pattern-Based Text Generator PTG supports translations into any kind of struc-
tured text. The structure of the target text is described by a set of patterns. PTG generates
a set of functions for them. They are called to compose an instance of the target structure
which is then output.

PTG is suitable to produce any kind of target language, e. g. programs of any program-
ming language, special purpose languages like TeX or PostScript, or just structured data
or tables in textual form.

PTG is typically applied for tasks of a language processor’s translation phase. The calls
of the patterns functions are then used in LIDO specifications to describe the translation of
certain tree contexts. PTG may as well be used in C functions or in stand-alone C programs
that translate some data structure into an output text.

Reading the documentation online one can use the documentation browser’s Run com-
mand to obtain a copy of the complete specification for the example described in this
manual.

Chapter 1: Introduction to PTG 3

1 Introduction to PTG

A PTG specification is a set of named patterns describing the structure and textual compo-
nents of an output text. They are contained in files of type .ptg. PTG generates a C module
ptg_gen.[ch] that has one function for each pattern specified. Calls of these functions ap-
ply the patterns in order to compose an instance of the target text, which can be output
by a call of PTG’s output functions. Those functions may be used in LIDO specifications
or in C modules which import the interface file of the generated module ptg_gen.h.

Consider the following simple example: Assume we want to produce parenthesized rep-
resentations of binary trees like S-expressions in LISP:

((1.nil).(2.(3.nil))

We specify three named patterns, one for the parenthesized structure, one for the literal
nil, and one for numbers:

Pair: "(" $ "." $ ")"

Nil: "nil"

Numb: $ int

For each of these patterns PTG generates a function which yields an internal repre-
sentation of a pattern application. The following nested calls produce the above output
text:

PTGOut (

PTGPair (

PTGPair(PTGNumb(1), PTGNil()),

PTGPair(PTGNumb(2), PTGPair(PTGNumb(3), PTGNil()))

));

Of course one may store intermediate results of pattern applications and defer output until
the target text is completely composed:

n1 = PTGPair (PTGNumb (1), PTGNil ());

n2 = PTGPair(PTGNumb(2), PTGPair(PTGNumb(3), PTGNil()));

PTGOut (PTGPair (n1, n2));

The benefits of using PTG can best be described by a comparison with using C printf

functions directly. For the above example a C program would contain statements like

printf ("(%s. %s)", a, b);

where a and b are pointers to the strings to be inserted.

Such a statement implements what text to be generated by the format string and the
arguments, when it is to be output by the placement of the statement within the program,
and how the text is produced by format strings and output functions.

PTG separates the issues what and when by the pattern specifications (what) and the
function calls (when). The calls produce an internal structure with all information neces-
sary to output the text, rather than immediately outputting it. PTG automatically and
efficiently implements the how.

Chapter 2: Pattern Specifications 5

2 Pattern Specifications

A pattern is specified by a named sequence of C string literals and $ tokens that denote
insertion points, e.g.

Pair: "(" $ "." $ ")" /* S-expression */

C style comments may be inserted anywhere in a PTG specification.

The pattern describes an output text that consists of the specified sequence of strings
with the results of pattern applications being inserted at each insertion point.

A pattern is applied by calling a PTG generated function that has the name of the
pattern preceded by PTG, PTGPair in this case. The result of such a call yields a pointer of
type PTGNode which represents that pattern application.

The pattern function takes as many arguments of type PTGNode as the pattern has
insertion points. The arguments are obtained from other calls of pattern functions. Their
order corresponds to that of the insertion points in the pattern. (Alternative forms of are
described in See Section 2.1 [Indexed], page 5 and See Section 2.2 [Typed], page 6.)

The pattern function for the example above has the following signature:

PTGNode PTGPair (PTGNode a, PTGNode b)

Examples for applications of this pattern are:

x = PTGPair (PTGNil(), PTGNil());

y = PTGPair (x, x);

Restrictions:

For every two patterns in all .ptg specifications, the following condition must hold: If any
two patterns are not equal, their names must be different. Additionally, the names of the
patterns must not collide with identifiers predefined for PTG.

PTG does not insert any additional white space before or after elements of the pattern
sequence. Token separation and new line characters (especially at the end of a file) have to
be specified explicitly.

2.1 Indexed Insertion Points

The insertion points of a pattern may be identified by numbers, e.g. $1, $2. This facility
allows to insert an argument of a pattern function call at several positions in the pattern,
and it allows to modify patterns without the need to change their application calls.

In the following example the first argument (the module name) is inserted at two posi-
tions:

Module: "module " $1 "\nbegin" $2 "end " $1 ";\n"

The pattern function is called with two arguments.

The correspondence between insertion points and function parameters is specified by the
numbers of the insertion points, i.e. the first argument is inserted at the insertion points
$1.

This facility also makes the calls of pattern functions more independent of pattern mod-
ifications. For example, the following pattern describing declarations

6 Pattern-based Text Generator

Decl: $1 /* type */ " " $2 /* identifiers */ ";\n"

would be applied by a call PTGDecl (tp, ids), with the first argument inserting the type
and the second inserting the identifiers. Those calls are invariant against changing the
pattern to Pascal-like declaration style:

Decl: $2 ":" $1 ";"

In the same way one variant of a pattern may omit an argument specified in an other
variant.

In general a pattern may contain several occurrences of any of the insertion point markers
$i. There is practically no upper bound for $i. The generated function has n parameters,
where n is the maximal i occurring in a $i of the pattern. The i-th function argument is
substituted at each occurrence of $i in the pattern.

If a pattern does not mention all $i between $1 and the maximum $n, e.g. $1 and $3

but not $2, the function has n parameters, but some are not used.

Restrictions:

Indexed and non-indexed insertion points must not be mixed in a single pattern.

2.2 Typed Insertion Points

Data items can be inserted into the output text by specifying insertion points to have one
of the types int, string, long, short, char, float or double, e.g.

Matrix: "float " $1 "[" $2 int "][" $3 int "];\n"

The generated pattern function has the following signature:

PTGNode PTGMatrix (PTGNode a, int b, int c)

Function calls must supply arguments of corresponding types. They are output in a
standard output representation.

Another typical application of typed insertion point is generating identifiers:

Ident: $ string $ int

This pattern may be used to compose identifiers from a string and a number, e.g. a call
PTGIdent ("abc", 5) producing abc5. The string item is often taken from the input of
the language processor, and the number is used to guarantee uniqueness of identifiers in
the output. (This construct also substitutes the outdated leaf patterns, See Chapter 8
[Outdated], page 27.)

A typical example for composition of output text fragments from data of basic types is
given by a pattern that produces German car identifications:

CarId: $ string $ string $int

which is applied for example by PTGCarId ("PB-", "AB-", 127).

Restrictions:

If an indexed insertion point occurs multiply in a pattern its type must be the same for all
occurrences.

Chapter 2: Pattern Specifications 7

2.3 Function Call Insertion

There are situations where it is inconvenient or impossible to specify an output component
by a pattern. In such cases calls of user defined functions can be specified instead of insertion
points in a pattern.

Assume as an example that indentation shall be specified for the output of a block
structured language:

Block: [NewLine] "{" [Indent] $1 /* declarations */

$2 /* statements */

[Exdent]

[NewLine] "}"

This pattern for producing a block has two ordinary insertion points, one for the declarations
of the block and one for its statements. The pattern function is called as usual with two
corresponding arguments. When the output text is produced the user defined functions
NewLine, Indent, and Exdent are called in order to insert text at the specified pattern
positions.

In this case the functions must have exactly one parameter that is a PTG_OUTPUT_FILE:

extern void NewLine (PTG_OUTPUT_FILE f);

extern void Indent (PTG_OUTPUT_FILE f);

extern void Exdent (PTG_OUTPUT_FILE f);

The type PTG_OUTPUT_FILE can be supplied by the user. If it is not, a default is supplied by
the generated file ptg_gen.h. The function has to be implemented such that a call outputs
the desired text to the file pointed to by f by using some provided output macros, See
Chapter 7 [Macros], page 23.

Note: These function calls are executed when the output text is produced. The functions
are not yet called when the patterns are applied. PTG guarantees that those calls occur in
left-to-right order of the produced output text. Hence, the above triple of functions may
use global variables to keep track of the indentation level.

Functions, that support indentation ready to use in a PTG specification can be found in
the module library, See Section “Indentation ” in Specification Module Library: Creating
Output.

Such function calls may also take arguments which are passed through from the call of
the pattern function. They are specified by occurrences of insertion points within the call
specification:

Block: [NewLine] "{" [Indent $3 int] $1 /* declarations */

$2 /* statements */

[Exdent $3 int]

[NewLine] "}"

In this case the indentation depth is determined individually for each application of the
Block pattern which is called for example by PTGBlock (d, s, 3). The last argument is
passed through to the calls of Indent and Exdent which now must have the signatures

extern void Indent (PTG_OUTPUT_FILE f, int i);

extern void Exdent (PTG_OUTPUT_FILE f, int i);

Note: The arguments supplied with a pattern application are stored until the functions
are called when the output is produced.

8 Pattern-based Text Generator

In general several arguments may be specified to be passed through to a function call.
They may be typed by one of the types int, string, long, short, char, float, double or
pointer. In case of type pointer the supplied argument of the pattern function call must
have a pointer type that is defined for the corresponding parameter of the user function. If
no type is specified an argument of type PTGNode is passed through.

Arguments specified of type pointer are typically used if the translation of certain data
structures by user specified functions is to be inserted into pattern driven translations.

2.4 Optional Parts in Patterns

Parts of a pattern can be marked as optional by surrounding them with braces. Using this
notation, the optional parts will only be printed in the output, if all other insertions of the
pattern (insertions not marked optional by being included in a brace) produce output. This
can be applied to simplify the construction of lists considerably.

CommaSeq: $1 {", "} $2

A call of the pattern function PTGCommaSeq(a,b) produces the separator only if neither
a nor b is empty; otherwise a and b are just concatenated, leaving out the optional part.
This facility is especially useful if such separated lists are composed by pattern function
calls that occur in loops or in separated contexts. See Chapter 5 [Example], page 13, for a
more sophisticated example.

Note: The result of a pattern call is the unique value PTGNULL if the empty output
string is produced. (There is no way to further inspect the intermediate results of pattern
applications.) Certain pattern constructs do not yield PTGNULL even if they may represent
empty strings:

• Typed insertions and function call insertions,

• empty strings and empty literals.

are considered not to be empty.

Another example for optional parts in patterns is the following:

Paren: {"("} $ {")"}

The pattern function PTGParen(a) will produce parentheses around a if a is not empty.
Otherwise, PTGParen(a) will be empty.

Restrictions:

An optional pattern is printed, if all non-optional insertions in the node are not PTGNULL.
However, if there are no non-optional insertions, the braces are ignored and a warning is
issued.

It is possible to include more than one pattern in braces. Multiple optional parts can
be included in one Rule. However, the braces marking an optional pattern cannot be used
recursively inside an optional pattern.

Chapter 3: Output Functions 9

3 Output Functions

PTG separates the composition of a target text from outputting it: A target text is com-
posed by calls of pattern functions. They yield results of type PTGNode representing the
target text or fragments thereof.

There are three predefined PTG functions that can be applied to PTGNode values in order
to output the text. They have the following signatures:

PTGNode PTGOut(PTGNode r)

PTGNode PTGOutFile(char *f, PTGNode r)

PTGNode PTGOutFPtr(FILE *f, PTGNode r)

A call PTGOut (x) writes the text represented by x to stdout.

The function PTGOutFile takes the name of the output file as an additional parameter.
A call PTGOutFile (n, x) opens the file named n for writing, writes the text represented
by x to it, and closes the file before returning.

The function PTGOutFPtr takes the file pointer to an already open file as additional
parameter. A call PTGOutFPtr (f, x) writes the text represented by x to f, and leaves The
function PTGOutFPtr takes open upon exit.

Each of the functions yields its PTGNode argument as result. Hence, nested calls of output
functions may produce parts of the complete target text on separate files, e.g.

PTGOutFile ("f1",

PTGModule (

PTGOutFile ("f2", PTGInterface (......)),

PTGBody (....)))

In the above example a Module is composed by two text fragments Interface and Body.
The whole text is written to the file f1. The Interface fragment is also written to the file
f2.

Of course nested calls like the above can be decomposed by storing intermediate PTGNode
values. Nested calls of PTGOutFile to the same file would destroy the results of the former
calls. Nested calls of PTGOutFPtr to the same file would append the results of each call to
the end of the file.

Note: Be aware that the output functions do not add a newline character to the end
of an output text. It has to be explicitly specified by a pattern. This behavior has been
changed compared to previous versions of PTG. Adding a newline character to a text is
simply specified by a pattern like

NewLine: $ "\n"

Chapter 4: Some Useful Techniques 11

4 Some Useful Techniques

This chapter describes some techniques that solve common tasks in PTG applications.

4.1 Output of Data Items

Usually data items like numbers, identifiers, or strings which are computed by the transla-
tion process or taken from the input are to be inserted into the output text at certain posi-
tions. This is best achieved by using typed insertion points as described in See Section 2.2
[Typed], page 6.

It is often necessary to convert single data items into a PTGNode pointer to be used in
pattern applications. This can be achieved by defining patterns for single data items:

Number: $ int

String: $ string

StringLit: "\"" $ string "\""

Such patterns are applied by calls like PTGNumber(5), PTGString("+"),
PTGStringLit("Hello!") producing the text items 5, +, and "Hello!" respec-
tively.

Predefined patterns for the conversion of single data items to PTGNode pointers can also
be found in a module of the specification library, see also see Section “Commonly used
Output patterns for PTG” in Tasks related to generating output.

This module also solves the problem of generating a PTGNode that generates a data item
of the input text, e.g. identifiers or floating point numbers, on output.

4.2 Generating Identifiers

Common techniques for producing identifiers are recommended especially for translation
into programming languages. In the simplest case identifiers are just reproduced from the
input as shown above. The following set of patterns allow to add prefixes or postfixes to
the original identifiers (see See Section 2.2 [Typed], page 6):

PointerId: "PTR_" $ string

ValueId: "VAL_" $ string

UniqueId: $ string $ int

Patterns like the first two may be used to generate different output identifiers from one input
identifier. The last pattern allows to attach a number to an identifier, e.g. to guarantee
uniqueness in the output in cases where the source and the target language have different
scope rules.

Note: PTG does not add any white space between pattern items. Hence, patterns
where identifiers or numbers may be inserted have to ensure that the component tokens are
separated, e.g.

Decl: $ /* Type */ " " $ /* Ident */

12 Pattern-based Text Generator

4.3 Output of Sequences

The construction of output text often requires to compose arbitrary long sequences of items,
e.g tokens, statements, or procedures. Some simple techniques for those tasks are described
here. The examples can easily be generalized for similar applications.

A generally applicable pattern for constructing sequences is

Seq: $ $

An application

PTGSeq (PTGString("."), PTGSeq (PTGString("."), PTGString(".")))

produces a sequence of 3 dots, assuming pattern String is suitably defined.

The following C loop computes a sequence of n dots:

PTGNode dots = PTGNULL; int i;

for (i=0; i<n; i++) dots = PTGSeq (dots, PTGString("."));

Sequences where the items are separated by a certain string, e.g. a comma or a space
character can be specified by

CommaSeq: $ {", "} $

An application

PTGCommaSeq (PTGNumber (1), PTGNumber (2))

produces 1, 2, assuming pattern Number be suitably defined.

The following C loop computes a comma separated sequence of the numbers 1 to n:

PTGNode numseq = PTGNULL; int i;

for (i=1; i<=n; i++)

numseq = PTGCommaSeq (numseq, PTGNumber (i));

Chapter 5: A Complete Example 13

5 A Complete Example

In this chapter we demonstrate the use of PTG for translating a simple assignment lan-
guage into C code. This example shows PTG techniques in the context of a complete
translator specification. It especially demonstrates how PTG patterns are applied in LIDO
specifications.

When this manual is read online, the browser’s Run command can be used to obtain a
copy of the complete specification for further experiments. You will get a Funnelweb file
PtgEx.fw containing the content of this chapter (see Section “top” in FunnelWeb). It can
be used for example to derive the specified processor by

PtgEx.fw :exe >.

or to derive the set of files described below:

PtgEx.fw :fwGen >.

5.1 Source Language Structure

Programs of this example language are sequences of assignments, input statements, and
output statements, like

simple[1]==

input a;

output a;

x := a + 1;

y := x - 5;

output x;

output y + x;

This macro is attached to a product file.

The values of variables and expressions are integral numbers. There are only the binary
operators + and -. The above program is to be translated into the following C program:

simple.out[2]==

#include <stdio.h>

int a = 0, x = 0, y = 0;

int main (void) {

scanf ("%d", &(a));

printf ("%d\n",a);

x = a+1;

y = x-5;

printf ("%d\n",x);

printf ("%d\n",y+x);

exit (0);

}

14 Pattern-based Text Generator

This macro is attached to a product file.

The structure of the source programs is specified by the following concrete grammar:

Program.con[3]==

Program: Statement*.

Statement: Variable ’:=’ Expression ’;’.

Statement: ’input’ Variable ’;’.

Statement: ’output’ Expression ’;’.

Expression: Expression Operator Operand / Operand.

Operator: ’+’ / ’-’.

Operand: Variable.

Operand: IntLit.

Variable: Ident.

This macro is attached to a product file.

In the tree grammar Expressions and Operands are represented both by Expression

nodes, as specified by the type .sym rule:

Expr.sym[4]==

Expression ::= Operand .

This macro is attached to a product file.

Identifier tokens, number literals, and comments are denoted as in Pascal, as stated by
the following type .gla specification:

Mini.gla[5]==

Ident: PASCAL_IDENTIFIER

IntLit: PASCAL_INTEGER

PASCAL_COMMENT

This macro is attached to a product file.

5.2 Program Frame

In this section the overall structure of the target programs is specified, the name of the
output file is determined, and its contents is produced by a PTG output function. We first
specify a pattern for target program frame:

Frame.ptg[6]==

Frame:

"#include <stdio.h>\n\n"

$1 /* declarations */

"\nint main (void) {\n\n"

$2 /* statements */

Chapter 5: A Complete Example 15

"\nexit (0);\n}\n"

This macro is attached to a product file.

It has two insertion points, one for variable declarations and one for the statement se-
quence. The text to be inserted is obtained from the attributes Program.DeclPtg and
Program.StmtPtg of type PTGNode It is shown below how they are computed. Here they
are used as arguments of the Frame pattern application:

TransProg.lido[7]==

ATTR DeclPtg, StmtPtg: PTGNode;

SYMBOL Program COMPUTE

PTGOutFile (CatStrStr(SRCFILE, ".c"),

PTGFrame (THIS.DeclPtg, THIS.StmtPtg));

END;

This macro is attached to a product file.

The above call of the output function PTGOutFile (see see Chapter 3 [Output], page 9)
writes to a file which name is derived from the file name of the source program by appending
".c". The concatenation function is imported from the specification module library. See
Section “String Concatenation” in Specification Module Library: Common Problems, for
further details on the Strings module.

TransProg.specs[8]==

$/Tech/Strings.specs

This macro is attached to a product file.

The macro SRCFILE is obtained from the source program module, see Section “Text
Input” in Library Reference Manual. That module is included automatically into every Eli
specification. So, only it’s interface has to be made known by the attribute evaluator:

TransProg.head[9]==

#include "source.h"

This macro is attached to a product file.

5.3 Expressions

In this section we specify the translation of expressions. Target expressions are composed
by applications of patterns that construct the text in a bottom-up way, i.e. from the leaves
up to the complete expression.

In our simple example this translation is one-to-one as specified by the three patterns:

TransExpr.ptg[10]==

BinOperation: $ $ $

Number: $ int

String: $ string

This macro is attached to a product file.

The BinOperation pattern composes a left operand, an operator, and a right operand. The
Number pattern just converts an integral number into text. The String pattern reproduces
its argument. It is used here for output of operators and of identifiers.

16 Pattern-based Text Generator

These patterns are applied in computations of Expression contexts. Attributes Ptg of
type PTGNode are used for the intermediate results:

TransExpr.lido[11]==

ATTR Ptg: PTGNode;

RULE: Expression ::= Expression Operator Expression COMPUTE

Expression[1].Ptg =

PTGBinOperation (

Expression[2].Ptg, Operator.Ptg, Expression[3].Ptg);

END;

RULE: Operator ::= ’+’ COMPUTE

Operator.Ptg = PTGString ("+");

END;

RULE: Operator ::= ’-’ COMPUTE

Operator.Ptg = PTGString ("-");

END;

RULE: Expression ::= Variable COMPUTE

Expression.Ptg = Variable.Ptg;

END;

RULE: Expression ::= IntLit COMPUTE

Expression.Ptg = PTGNumber (IntLit);

END;

RULE: Variable ::= Ident COMPUTE

Variable.Ptg = PTGString (StringTable (Ident));

END;

ATTR Sym: int;

This macro is attached to a product file.

The last two computations use values obtained from named terminal symbols: IntLit

supplies an integer value to the Number pattern, the token code of Ident is used to access the
identifier string from the StringTable. The String pattern then reproduces the identifier.

5.4 Using LIDO CHAINs

In this sections the translation of statement sequences is shown. The LIDO CHAIN construct
is used to compose a sequence of translated statements in left-to-right order.

Assignments, input statements, and output statements are translated by the following
patterns:

TransStmt.ptg[12]==

AssignStmt: $1 /* lhs */ " = " $2 /* rhs */ ";\n"

Chapter 5: A Complete Example 17

InputStmt: "scanf (\"%d\", &(" $1 /* variable */ "));\n"

OutPutStmt: "printf (\"%d\\n\"," $1 /* expression */ ");\n"

Seq: $ $

This macro is attached to a product file.

The last pattern is used to combine two text components (statement sequences in this case)
into one (see See Section 4.3 [Sequences], page 12).

A CHAIN named StmtChn is defined to compose PTGNodes in left-to-right order through
the tree. The CHAIN starts in the root context with an empty text. The result is obtained
at the end of the CHAIN by TAIL.StmtChn:

TransStChn.lido[13]==

CHAIN StmtChn: PTGNode;

SYMBOL Program COMPUTE

CHAINSTART HEAD.StmtChn = PTGNULL;

SYNT.StmtPtg = TAIL.StmtChn;

END;

This macro is attached to a product file.

In each of the three statement contexts the translation is produced by application of the
corresponding pattern and appended to the end of the CHAIN using the Seq pattern:

TransStmt.lido[14]==

RULE: Statement ::= Variable ’:=’ Expression ’;’ COMPUTE

Statement.StmtChn = PTGSeq (Statement.StmtChn,

PTGAssignStmt (Variable.Ptg, Expression.Ptg));

END;

RULE: Statement ::= ’input’ Variable ’;’ COMPUTE

Statement.StmtChn = PTGSeq (Statement.StmtChn,

PTGInputStmt (Variable.Ptg));

END;

RULE: Statement ::= ’output’ Expression ’;’ COMPUTE

Statement.StmtChn = PTGSeq (Statement.StmtChn,

PTGOutPutStmt (Expression.Ptg));

END;

This macro is attached to a product file.

5.5 Using LIDO CONSTITUENTS

In this section the construction of a declarator sequence is described using the LIDO
CONSTITUENTS construct. It is also shown how a list with separators is produced, and
how text is generated only once for each identifier that occurs in the program.

The source language does not have declarations; variables are introduced by just using
them. Hence, we have to generate declarations in the target program, one for each variable
that occurs in the source.

18 Pattern-based Text Generator

A variable may occur several times, but its declaration must be generated only once.
For that purpose each variable is identified by a key which is associated to every occurrence
of the variable.

This task is an instance of a name analysis task. We can use the AlgScope module of
the module library to solve it:

ScopeLib.specs[15]==

$/Name/AlgScope.gnrc:inst
This macro is attached to a product file.

The computational role IdDefScope provided by that module is associated to the gram-
mar symbol Variable:

Scope.lido[16]==

SYMBOL Variable INHERITS IdDefScope COMPUTE

SYNT.Sym = TERM;

END;
This macro is attached to a product file.

The computations of that module yield an attribute Variable.Key. It has the same
value for each occurrence of a variable identifier.

We now associate a property IsDeclared to variables by a type .pdl specification:

Decl.pdl[17]==

IsDeclared: int;
This macro is attached to a product file.

It describes a state of that variable with respect to the translation process: A declaration
is only produced if IsDeclared is not yet set, and then IsDeclared is set. The attribute
Variable.DeclPtg takes the result, either the generated target declaration or PTGNULL.

VarDecl.lido[18]==

RULE: Variable ::= Ident COMPUTE

Variable.DeclPtg =

IF (GetIsDeclared (Variable.Key, 0),

PTGNULL,

ORDER (ResetIsDeclared (Variable.Key, 1),

PTGDeclVariable (StringTable (Ident))));

END;
This macro is attached to a product file.

The pattern DeclVariable is used here to reproduce the variable name from the
StringTable and to add the initialization to it: A single variable declarator is specified by
the pattern

Decl.ptg[19]==

DeclVariable: $ string " = 0"

Declaration: "int " $ ";\n"
This macro is attached to a product file.

The second pattern constitutes a complete declaration where the declarator list is inserted.

The declarator list is collected in the Program context using a CONSTITUENTS construct.
It combines the PTGNode values of all Variable.DeclPtg attributes of the tree:

ProgDecl.lido[20]==

Chapter 5: A Complete Example 19

SYMBOL Program COMPUTE

SYNT.DeclPtg =

PTGDeclaration (

CONSTITUENTS Variable.DeclPtg

WITH (PTGNode, PTGCommaSeq, IDENTICAL, PTGNull));

END;

This macro is attached to a product file.

The WITH clause of the CONSTITUENTS construct specifies the type of the combined val-
ues, PTGNode, and three functions which are applied to obtain the resulting value: PTGNull
is the nullary predefined function producing no text. IDENTICAL is a unary function pre-
defined in LIDO; it is applied to each Variable.DeclPtg attributes reproducing its value.
PTGCommaSeq is a pattern function that combines two PTG texts, and separates them by
a comma if none of them is empty. That pattern is specified using PTG’s optional clause
(see See Section 4.3 [Sequences], page 12):

Comma.ptg[21]==

CommaSeq: $ {", "} $

This macro is attached to a product file.

Chapter 6: Predefined Entities 21

6 Predefined Entities

PTG generates a C module consisting of an interface file ptg_gen.h and an implementation
file ptg_gen.c. The interface file exports definitions for the following identifiers:

PTGNode the pointer type for internal representations of pattern applications;

PTGNULL a pointer of type PTGNode representing no text; Note: There are many ways to
represent no text; comparing a PTGNode to PTGNULL is only a pointer compari-
son;

PTGNull()

a macro without parameters that yields PTGNULL, to be used where a function
notation is needed, as in WITH clauses of LIDO’s CONSTITUENTS construct;

void PTGFree (void)

a call of this function deallocates all data generated by pattern applications;
to be used for reduction of dynamic memory usage in cases where output is
produced in several phases.

The following functions can be used to process the contents of a PTGNode and it’s in-
sertions recursively into an output file. These functions are only available, under certain
preconditions, See Chapter 7 [Macros], page 23.

PTGNode PTGOut (PTGNode root)

a function that outputs the text represented by the parameter root to standard
output

PTGNode PTGOutFile (char *filename, PTGNode root)

a function that opens a file with the name given by the parameter filename,
outputs the text represented by the parameter root, and closes the file

PTGNode PTGOutFPtr (FILE *output, PTGNode root)

a function that expects the parameter output to be a file which is open for
writing, outputs the text represented by the parameter root to the file, and
leaves the file open

PTGNode PTGProcess (PTG_OUTPUT_FILE file, PTGNode root)

a function that expects the parameter file to be of a type that is provided
by the user, See Chapter 7 [Macros], page 23. If the default definition of PTG_
OUTPUT_FILE is overriding, only PTGProcess can be used as output function;
the other three output functions are not available in that case.

The user should ensure that these predefined identifiers do not clash with other def-
initions in the application importing the interface file. In particular, the pattern names
should be chosen such that prefixing them with PTG does not yield a predefined name, e.g.
a pattern name Free would be a bad choice.

The implementation file contains external references to any user defined function men-
tioned in the particular specification.

Chapter 7: Influencing PTG Output 23

7 Influencing PTG Output

The usage of PTG Patterns functions is a very flexible way to construct the output of a
program. However, some desirable effects can not be achieved using pattern functions only:

Pretty Printing
A pattern function does not have access to the current column position. There-
fore, it cannot know where to insert line breaks to get the output formatted
properly.

Output destination
It can be desirable to write the output of PTG patterns to a destination other
than a file, for example to redirect the output into a string buffer or to post-
process the output through a filter.

To solve such tasks, PTG does not write its output directly into a file. Instead, a set of
macros is defined that can be adjusted to change the behavior of PTG. If these macros are
not defined, PTG supports default definitions that process the contents of a PTGNode into
a named file or a given file pointer. In the following, those macros are explained and small
examples are given:

PTG_OUTPUT_FILE

This macro defines the type name of the file parameter of the other macros,
the output functions defined in Chapter 3 [Output], page 9, and the function
call insertions. If no definition is supplied, its value is defined to be FILE *. Its
value must be assignable by the C-operator =. If the definition of PTG_OUTPUT_
FILE is changed, a suitable definition for PTG_OUTPUT_STRING must also be
provided.

PTG_OUTPUT_STRING(file,param)

This macro is called to write a string value into an output file. It is used by
default for every text written by PTG. Hence, redefining this macro suffices to
change the default behavior of PTG, for instance to support pretty printing.
This macro has to be redefined if PTG_OUTPUT_FILE is redefined.

PTG_OUTPUT_INT(file,param)

PTG_OUTPUT_SHORT(file,param)

PTG_OUTPUT_LONG(file,param)

PTG_OUTPUT_CHAR(file,param)

PTG_OUTPUT_FLOAT(file,param)

PTG_OUTPUT_DOUBLE(file,param)

These macros are used to write typed insertions into an output file. By default,
they are set up in a way that they convert their second argument into a string
and call PTG_OUTPUT_STRING to process the output. So, when redefining PTG_

OUTPUT_FILE, you need not to supply a definition for these macros.

Of course, there may be more efficient ways to output values of the various
data types other than to convert them into strings and send the result to the
string handling function. If you want to supply such an alternative for writing
characters, for example, redefine the default behavior of PTG_OUTPUT_CHAR to
print the character directly. These macros are provided for efficiency purposes
only.

24 Pattern-based Text Generator

To override the default implementations for these macros, implement a substitution
function in a type .c file. Include the file ptg_gen.h to supply your new function with
definitions for the other macros, especially PTG_OUTPUT_FILE. Write cpp directives that
define the desired macro(s) into a type .ptg.phi file and include it in your specification.
Eli will then concatenate all those definitions and supply it as a header file ptg.h to your
processor.

As an application of these macros, the following section shows a simple and easy way to
implement pretty printing of the output generated by PTG.

7.1 Changing Default Output for Limited Line Length

Sometimes it is necessary to postprocess PTG generated output. For example, the length
of the generated output lines may be limited by an upper bound, so that certain restricted
tools can process the output. Without postprocessing of the output, there is no way to
determine the current position in a line for a PTG structure being written. Hence, we
adapt the definitions of the output macros to solve that task.

As all output is finally handled by the macro PTG_OUTPUT_STRING, it is sufficient to
modify it such that it controls the current position in the line. With some more effort, it
would be possible do complete line breaking by buffering one line of output and looking for
suitable break points when the end of the line is encountered.

The following code keeps track of the current column position and implements a function,
that conditionally inserts a line break if the line is longer than 65 chars.

linepos.c[22]==

#include <string.h>

#include "ptg_gen.h"

static col = 0;

void InitCol(void)

{

col = 0;

}

void OutputLine(FILE *f, char *s)

{

int l;

char *nl;

if (!s) return;

l = strlen(s);

nl = strrchr(s, ’\n’);

if (!nl)

col += l;

else

Chapter 7: Influencing PTG Output 25

col = (l - 1 - (nl - s));

fputs(s, f);

}

void CondNl(FILE *f)

{

if (col > 65)

OutputLine(f, "\n");

}

This macro is attached to a product file.

The function InitCol serves as initialization, if more than one output file should be
generated. The function CondNl inserts a line break, if the current line is longer than 65
characters. The function OutputLine overrides the default implementation of PTG_OUTPUT_
STRING.

linepos.ptg.phi[23]==

#define PTG_OUTPUT_STRING(file,param) OutputLine(file,param)

This macro is attached to a product file.

This can be used for example in the following PTG specification:

linepos.ptg[24]==

CommaSeq: $ ", " [CondNl] $

This macro is attached to a product file.

Now, in a large iteration of calls to PTGCommaSeq(), a line break is inserted automatically,
if a line exceeds 65 characters.

Using the online documentation, one can obtain a copy of the attached files.

Chapter 8: Outdated Constructs 27

8 Outdated Constructs

The present version of PTG does not contain any outdated constructs. The leaf pattern
facility which was marked as outdated in previous versions of Eli has been deimplemented.

Chapter 9: Syntax of PTG Specifications 29

9 Syntax of PTG Specifications

PTGSpec: PatternSpec+

PatternSpec: PatternName ’:’ (Item | Optional)*

PatternName: Identifier

Item: CString | Insertion | FunctionCall

Insertion: ’$’ [Number] [Type]

FunctionCall: ’[’ Identifier Arguments ’]’

Arguments: Insertion*

Type: ’int’ | ’string’ | ’pointer’ | ’long’ | ’short’

| ’char’ | ’float’ | ’double’

Optional: ’{’ Item+ ’}’

Identifier and CString tokens are denoted as in C. Number tokens consist of decimal
digits. Comments are written in C style. Line comments starting with # are also accepted.

Note: A CString token may only extend over several lines if all but the last line end
with a backslash character. An error message like illegal newline in string literal

indicates a violation of that rule.

The following additional alternative for PatternSpec defines leaf patterns. This con-
struct is outdated and is no longer accepted by PTG:

PatternSpec: PatternName ’:’ Type+ ’[’ [Identifier] ’]’

If you have old specifications that use this pattern style, rewrite them by pattern specifica-
tions as describe above, e.g.

MyLeaf: int string []

YourLeaf: int string [YourFct]

should be rewritten into

MyLeaf: $ int $ string

YourLeaf: [YourFct $ int $ string]

Index 31

Index

A
A Complete Example . 13

C
C module . 3
CHAIN . 16
char . 6
comments . 5, 29
CONSTITUENTS . 17

D
declarations . 17
double . 6

E
example . 13
example language . 13
exported identifiers . 21
Expressions . 15

F
file name . 15
float . 6
floating point numbers . 11
Function Call Insertion . 7
function signature . 5, 6, 7

G
Generating Identifiers . 11

I
identifier . 11
identifiers . 6, 11, 29
indentation . 7
Indexed Insertion Points . 5
insertion point . 5, 6
int . 6, 11
interface file . 3, 21
Introduction . 3

L
Leaf Pattern . 27
LIDO . 13, 15, 16, 17
list . 12
long . 6

N
newline . 9, 29
numbers . 11

O
optional output patterns . 8
Outdated Constructs . 27
output function . 14
Output Functions . 9
Output of Data Items . 11
Output of Sequences . 12

P
passed through arguments . 7
pattern . 5
pattern function . 5
Pattern Specifications . 5
Pattern-Based Text Generator 1
pointer . 8
Predefined Entities . 21
printf . 3
Program Frame . 14
PTG . 1
ptg_gen.c . 3
ptg_gen.h . 3, 21
PTGFree . 21
PTGNode . 5, 6, 9, 21
PTGNull . 21
PTGNULL . 21
PTGOut . 9, 21
PTGOutFile . 9, 21
PTGOutFPtr . 9, 21
PTGProcess . 21

S
separator . 12, 19
sequence . 12
sequences . 16, 17
short . 6
Source Language Structure 13
SRCFILE . 15
statements . 16
string . 6, 11, 29
StringTable . 16
Syntax of PTG Specifications 29

T
tokens . 29
Typed Insertion Points . 6

32 Pattern-based Text Generator

U
unique pattern names . 5
user supplied function . 7
Using LIDO CHAINs . 16
Using LIDO CONSTITUENTS . 17

W

white space . 5, 11

WITH functions . 18

	Introduction to PTG
	Pattern Specifications
	Indexed Insertion Points
	Typed Insertion Points
	Function Call Insertion
	Optional Parts in Patterns

	Output Functions
	Some Useful Techniques
	Output of Data Items
	Generating Identifiers
	Output of Sequences

	A Complete Example
	Source Language Structure
	Program Frame
	Expressions
	Using LIDO CHAINs
	Using LIDO CONSTITUENTS

	Predefined Entities
	Influencing PTG Output
	Changing Default Output for Limited Line Length

	Outdated Constructs
	Syntax of PTG Specifications
	Index

